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NOTATION 

The body system of axes, radian measure, and foot-pound-second units are used 
throughout the paper unless specifically stated or indicated otherwise. Basic sign 
conventions are shown in Figure 1. la Section 1, in which a number of axis systems 
are considered, the subscripts are used to denote quantities referred to the various 
systems except for the quantities referred to the body system of axes. The subscripts 
for these quantities are omitted for convenience except to identify coordinates, xb , 
yb , and zb . 

perpendicular distance from spring to knife edge (Fig.13), 
ft 

a, A polynomial coefficients (Section 3) 

cross-sectional area of air-intake duct of jet engine at 
entrance, ft2 

cross-sectional area of jet-exhaust duct of jet engine at 
exit,  ft2 

ax-afan longitudinal,  lateral, and normal accelerations of the air- 
craft at the center of gravity relative to the body system 
of axes; positive forward,  to the right,  and up,  respec- 
tively,    g   units 

axl,ati,Bni recorded values of   ax ,  at ,  and   aa ,  respectively; 
corrected for phase lag and misalinement but not for loca- 
tion relative to the center of gravity,    g   units 

b 

b.B 

c 

c, C 

C 

wing span, ft 

polynomial coefficients (Section 3) 

mean aerodynamic chord, ft 

polynomial coefficients (Section 3) 

spring couple (Section 4), ft lb 

coefficient of axial force along the body x-axis; positive 
to the rear, -X/qS 

phugold damping coefficient, V -^ + 
2C„ 

3u      cos a cos ß 

<Co> Cu'P contribution of power to phugoid damping coefficient, 
y3c1 + _2C1_ 

Bu      cosacos/3 

x 



Cc a 

Cc. 
3C„ 

ac 
B — 

2V 

2k 
B*° 

2V 

"CS. 
^c 
38. 

CLa 

CLS, 

c.,(c,)8.(c,)w,(cI)0 

ci„ 

drag coefficient; coefficient of axial force along the 
stability x-axis, positive to the rear,    -Xs/qS 

lift coefficient; coefficient of lift force along the 
stability z-axis, positive up,    -Zs/qS 

W 

qS 

lift-curve slope,    BcL/B<x 

B^ 
2V 

B*! 
2V 

BS_ 

coefficient of rolling-moment about the body, stability, 
wind, and principal x-axis, respectively, 
(rolling moment)/qSb 

damping-in-roll derivative, 
Be, 

B^ 
2V 

ft 

ch 
Be _l_ 
rb 

2V 

xi 



clß 

Clß 

c\ 

cml(ca)s.(cm)m.(cm)0 

«Vp 

<C.a)p 

effective dihedral derivative, 

«VP 

L«s, 

3Cj 
18 

2V 

pitchir-g-moment coefficient about the body, stability, wind, 
and principal y-axis, respectively,  (pitching moment)/^Sc 

pitching-tnooent coefficient about the aerodynamic center 

contribution of power to pitching-moment coefficient 

3CB longitudinal-stability derivative,   -~ 
da 

contribution of power to longitudinal stability (Equations 
(35) and (44)) 

** 

2C_ 

«V, 

ac 

2V 

I3L 

2V 

V —Ä +  =  
Bu      cosacos/3 

refer to Equations (47),   (48),  and (49) 

normal-force coefficient,  coefficient of force parallel to 
body z-axis; positive up,    -Z/qTS 

contribution of power to normal-force coefficient 

xii 



4= ■ -r - 

CNc 
3c, 

3a 

(CNJI variation of contribution of (CN)p with angle of attack 

(CNa)h.t. variation of normal-force coefficient of horizontal tail 
with local angle of attack at the tail; coefficient based 
on horizontal-tail area and local dynamic pressure, 

-Zh.t. 
gh.t.Sh.t. 

>%.t. 

(CN(X)v.t. variation of coefficient of force normal to vertical tail 
with vertical angle of attack of vertical tail; coefficient 
based on vertical-tail area and local dynamic pressure, 

(    Yv-t-     ) 
Viy.tA.t./ 
'Vt. 

CN& 25L 
3^ 

2V 

CN, 
3CN 

3 Hi 
2V 

CNU 
longitudinal phugoid static-stability derivative, 

3C„ 2C« 

3u      cos a cos ß 

3S„ 

C„.<Cn>s-<Cn>w<Cn>o yawing-moment coefficient about body,  stability,  wind, and 
principal z-axis,  respectively,    (yawing moment)/qSb 

-n/3 

3Cn 
static directional-stability derivative, -~ 

öß 

"riß 
öC, n 

7* 
2V 

-nr 
3C„ 

rb 

2V 

xiii 



3C 
u«.p 

Cnj 

Cns. 

<Cx>. 

Cy.(Cy)8,(Cy)w.(Cy)0 

cJß 

(Cy^Jp 

C*P 

3<* 
2V 

38, 

thrust coefficient,    (thrust)/qS 

3u 

coefficient of axial force along the wind x-axis, 
qS 

side-force coefficient parallel to body, stability, wind, 
and principal y-axis,  respectively,    C   = (C_)8 , 
(Side force)/qS 

3/3 

contribution of power to   Cy^ 

2V 

3C„ 

3* 
2V 

3^ 
2V 

<Cz>w 

d.D 

e 

e,E 

coefficient of force along the wind z-axis, —- 
qS 

polynomial coefficients (Section 3) 

2.178 

polynomial coefficients (Section 3) 

xiv 



K 

acceleration of gravity,  ft/sec2 

B        n     1 - sin£.   
V sec 

g l 
- cos 6 sin 0, — 
V sec 

h 

H 

Hx.Hy,Hz 

altitude,   ft 

angular-momentum vector of a rotating mass,    Irm^. lb ft sec 

angular momentum of   H   about    x , y , z   body axes, 
respectively,  lb ft sec 

moment of inertia of rotating mass of engine about its 
rotating axis,  slug ft2 

Wz 

Ixo,Iyo,Izo 

Ixs'Iy8
,Izs 

Ixr. Iyr.Izr 

moments of inertia of aircraft about x , y , z body axes, 
respectively, slug ft2 

moments of inertia of aircraft about x , y , z principal 
axes, respectively, slug ft2 

moments of inertia of aircraft about x , y , z stability 
axes, respectively, slug ft2 

moments of inertia of aircraft about x , y , z reference 
axes, respectively, slug ft2 

moment of inertia of cradle supporting aircraft (Section 4), 
slug ft2 

*; 
i xz 

k 

K 

product of Inertia of aircraft referred to body x- and 
z-axes,  slug ft2 

stability-augmentation-system gain,  sec 

linear spring constant,  lb/ft 

correlation constant (Section 5) 

torsional spring constant,    2Kga2 ,   ft lb/rad 

xv 



— 

I 

L.M.N 

distance as defined locally at time of discussion, ft 

rolling, pitching, and yawing moments about body x , y , 
z axes, respectively, ft lb 

LJ,II|,NJ inertial rolling, pitching, and yawing moments about the 
respective body axes, ft lb 

Lr.»MrB'Nr. rolling, pitching,  and yawing moments due to gyroscopic 
action of rotating mass of engine,  ft lb 

(L)8,(II)8,(N)S rolling, pitching, and yawing moments about the stability 
x , y , z axes, ft lb 

rolling acceleration about body x-axis, (rolling moment)/Ix , 
1/sec2 

BL     qSb2 
= — = C;   . ft lb sec 

Bp   'P 2V 

= Cl, 
qSb2 

2VI. 

1 

sec 

CP 

«? 

i, 

>+1. 
L„ + -*£ N„ 

1 
I      7     ' _    xz 

hh 
BL qSb2 

Br = C'rl7 

qSb2        1 
clr 2VIX '  sec 

Cr 
X 

sec 

, ft lb sec 

xz 

1 

sec 

BL 
— = Cj^qSb. ft lb 

=  C 
qSb   1 

p  Ix     sec' 

L«a 
BL 
—- = Cjs qSb, ft lb 
BS    »a 

xvi 



L$r 

Lsr 

m 

ma 

mi 

M 

M, 

MS, 

8 I. 

qSb   1 

sec 

Cjj qSb. ft lb 

qSb   1 

x 

mass of airplane, W/g , slugs 

mass rate of air intake of jet engine, slugs/sec 

mass rate of jet exhaust, slugs/sec 

Mach number 

ind jated Mach number 

Ditching acceleration about body y-axis, 
(pitching moment)/I , 1/sec2 

ro^2 

= C„ 
qSc BM 

Bq " *"« 2V 

qSc*   1 

, ft lb sec 

"1 2VIy ' sec 

3M  _  qSc 

Bu = Cfflu T ' lb SCC 

Cm 
qSc 

u Iy ' sec2 

BM 
= — = C^qSc , ft lb 

B« 

=  Cm 
qSc 

— Iy • see' 

BM     qSc2 

BT=Cm(i17 * ft lb sec 

qSc*   1 
Cm-   ,   ma 2VIy  sec 

BM 

e 
ft lb 

L 

* 

xvii 



N 

qSc       l 

yawing acceleration about body z-axls, (yawing moment)/I   , 
1/sec2 

BN qSb* 
=    r-=C 

3p "   CP   2V 
,  ft lb sec 

qS5z       1 
aP 2VI, '  sec 

2 

*P 

1 - iz sec 

BN qSb2 

= Cnr  ,  ft lb sec »      on 

=    c, 

Br       "'"   2V 

qSb2       1 
nr 2VI2     sec 

K *'*h1'    1 
1 - xz sec 

BN 
=    ^ = Cn/3qSb .   ft lb 

'-n/J 
"i'Sb       1 

Iz      sec' 

N$r 

BN 
~ = Cn8rqSb .   ft lb 

R«i -ns 
qSb   1 

r Iz ' seer 

Ns, 

Nsa 

BN 
—= Cn5aqSb . ft lb 

qSb 
-ng a Iz  see2 

^ 1 

xviii 



p.q.r 

Wro 

P8' V r8 

p.q.r 

P0
>c»o'ro 

p 

p'i 

Pi-Pj 

PT 

p 

q 

<>c 

qct 

Vt.'^V.t. 

R 

R 

rolling, pitching, and yawing velocities,  respectively, 
about body axes, rad/sec 

rolling, pitching, and yawing velocities, respectively, 
about principal axes, rad/sec 

rolling,  pitching,  and yawing velocities,  respectively, 
about stability axes, rad/sec 

rolling, pitching,  and yawing angular accelerations, 
respectively,  about body axes,  rad/sec2 

rolling,  pitching,  and yawing accelerations,  respectively, 
about principal axes,  rad/sec2 

static pressure,  lb/ft2 

Indicated static pressure, uncorrected recorded pressure, 
lb/ft2 

static pressures acting across inlet of air intake and 
exhaust,  respectively,  of jet engine,  lb/ft2 

stagnation pressure,    qc + p ,  lb/ft2 

period of short-period oscillation,  sec 

dynamic pressure,    i£v2 ,   lb/ft2 

impact pressure;  dynamic pressure of compressible flow 
(Equations (98) and (99)),   lb/ft2 

indicated impact pressure,  lb/ft2 

dynamic pressures at the horizontal and vertical tail, 
respectively,  lb/ft2 

instantaneous radius of turn (Pig. 27),   ft 

reaction force (Section 4),  lb 

1 
Laplacian operator,    a + icu ,   

sec 

°in 

S 

^.t.'^-.t. 

t 

instrument sensitivity 

wing area, ft2 

horizontal- and vertical-tail area», respectively, ft: 

time, sec 

xix 



1/2 

1   1 
T"~* T 

TR'T8 

U.V.W 

U.V.» 

A 
V 

Vi 

VJ 

w 

"c 

x.y.z 

X.Y.Z 

Xg.Yg.Zg 

thrust due to power, lb 

time required for absolute value of transient short-period 
oscillation to damp to one-half amplitude, sec 

roll-subsidence and spiral-divergence roots, respectively, 

of the lateral-directional characteristic equation, — 
sec 

roll-subsidence and spiral-divergence time constants, sec 

q(s) 
pitch-attitude time constant in numerator of 

transfer function,  sec 
Ms> 

linear velocities relative to body i , y , z axes, 
respectively, ft/sec 

linear accelerations relative to body x , y , z axes, 
respectively, ft/sec2 

Au 

V 

AÜ 

V 

airspeed, ft/sec 

velocity of intake air at air intake of jet engine ft/sec 

velocity of jet exhaust, ft/sec 

weight of aircraft, lb 

weight of cradle (Section 4), lb 

distances from the center of gravity along body x , y , z 
axes, respectively, ft 

forces along the body x , y , z axes, respectively; 
positive forward, to the right, and down, respectively, lb 

components of gravitational force acting along the body x , 
y , z axes, respectively 

3x   _  qS 
— = -CCuT. lb sec/ft 

xx 



-~~r I 
I 

-Ccu 

qS 

mV 

1 

sec 

3x 
3a = -Cc aÖS. lb 

qS 1 
- cc0 mV sec 

3X 

38 = -Cc sä* . lb 

lv.t. 

lfl 

lß 

no. 

3Y 

=    -c, 
qS 

cs 

3Y_ 

3/3 

mV     sec 

«Wv.t.Qv.t.Sv.t. .  lb 

= Cy^S .   lb 

qS 

^ mV '  sec 

lateral force In plane of propeller disk due tc propeller,  lb 

CySqS .  lb 

• 

• ii 

t ! 

=     C ys mV     sec 

3Z -     qS 
-— = - CN   — ,   lb sec/ft 
3u u  V 

-     qS       1 
" CNU T ■ — u mV     sec 

3z qSc 
—- = - CN„ ,  lb sec 
3q Nq   2V 

=     " CN0 r 
qSc 

2mV 

3Z 
— = - CNaqS ,   lb 

xxi 



ÖS 

(Z)p 

Vt. 
a 

(a)p 

4 
r 

r 

Sa 

s. 

- CN<x—  — 

3z 

mV  sec 

qSc 
• = - CN; 

qSc 

2V 
, lb sec 

-CN«-^ 

contribution of propulsion system to Z force, lb 

- (CNa)h.t.<ih.t.
sh.t. . lb 

angle of attack of aircraft 

change in a due to influence of flight-path curvature 

angle of attack of aircraft for zero Z force 

angle of attack of thrust line relative to airstream 
velocity at propeller or air intake of jet engine; thrust 
line considered parallel to x axis 

maximum positive or negative angle of attack obtained in a 
roll maneuver (Fig. 66) 

sideslip angle 

rate of change of ß   with time, rad/sec 

flight-path angle relative to horizontal 

adiabatic constant 

aileron deflection; positive when left aileron is deflected 
down 

iß 

elevator deflection; positive when trailing edge is 
deflected down 

rudder deflection; positive when trailing edge is deflected 
to the left 

>rß 

dS, 

iß 

xxil 



sp 

r 

£ph 

V 

angle included between reference x-axis and plane of spring 
couple (Fig.15) 

increment 

angle between body x-axis and principal x-axis; positive 
when reference is above principal axis at the nose 

upwash angle at the propeller due to such factors as 
fuselage and wing 

short-period ratio of actual damping to critical damping 

phugoid ratio of actual to critical damping 

instrument damping ratio 

angle of inclination of principal x-axis relative to 
stability x-axis; positive when principal x-axis is above 
stability x-axis at the nose 

pitch attitude of angular-velocity vector, Q , of rotating 
mass of engine relative to body x-axis 

"b relative aircraft density,   
pSb 

P 

a 

relative aircraft density, 
pSc 

absolute viscosity,  lb sec/in"2 

mass density öf iir,  oiugs/ft3 

real part of Laplacian operator,    s = a + iw 

time parameter,   -— ,  sec 
p\S 

<PA4> 

time constant for simplified stability augmentation system, 
sec 

yaw,  pitch,  and roll,  Euler orientation angles,  respectively, 
(In general aircraft motions,  they are normally the orienta- 
tion angles of the aircraft body axis system to a spatial 
(earth) reference system.    In instrument alinement,  they 
refer to the misalinement of the instrument reference axis 
system to the aircraft body axis system.) 
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rate of rotation of the Euler orientation angles, rad/sec 

yaw, pitch, and roll Euler orientation angles of aircraft 
body axis system during small perturbations relative to 
body axis system preceding the perturbations regardless of 
aircraft attitude preceding perturbations (Fig. 4(b)), 
At//' 2i /Ardt , AÖ' ~ jAqdt . M>' ^ jApdt 

damping angle 

phase angle of vector quantity i relative a vector 
quantity j 

undamped and damped natural frequencies, respectively, of 
the aircraft in short-period modes of oscillation, rad/sec 

undamped and damped natural frequencies, respectively, of 
the aircraft in phugoid modes of oscillation, rad/sec 

undamped natural frequency of instrument, rad/sec 

angular rate of rotation of rotating mass of engine, rad/sec 

absolute magnitude of a vector quantity J ; always positive 

transformation matrix 

inverse transformation matrix 

transform matrices to transform vector quantities from 
reference axis system to aircraft stability and body axis 
systems, respectively 

transformation matrix representing transformation from body 
to stability axis system 

relative to body, stability, wind, and principal axes 
systems, respectively 

contribution due to power 

xxiv 

sN*,'. 
9; , 



r- 

CONSIDERATIONS IN THE DETERMINATION OF STABILITY AND CONTROL 
DERIVATIVES AND DYNAMIC CHARACTERISTICS FROH FLIGHT DATA 

Chester H.Wolowicz 

1. INTRODUCTION 

The determination of stability and control characteristics from flight data in the 
form of derivatives and other behavior parameters has become an important part of 
flight testing. As new concepts in airplanes are developed or the airplane flies in 
new Mach and altitude regimes, there is the need to verify theory and wind-tunnel data 
and the various influences on stability characteristics, to provide information not 
obtained in wind-tunnel studies, and to uncover the sources of discrepancies between 
prediction and actual flight behavior. Where wind-tunnel data are unavailable or where 
safety of flight into untested regions is of concern, flight-determined derivatives 
have been extrapolated to predict airplane behavior prior to flight into these regions. 

Because of the exploratory nature of many of the investigations, the practical 
aspects of determining derivatives and other behavior parameters, such as oscillatory 
characteristics, from flight data are very important. Experience has shown that a 
maximum appreciation and understanding of the practical aspects is attained when back- 
ground knowledge includes an understanding of axis systems, transformations, the 
equations of motions and the limitations of the equations, techniques used to determine 
the mass characteristics of the airplane, the installation and behavior of flight test 
Instrumentation, flight test techniques, and the theory and limitations of techniques 
used to determine the stability and control characteristics from flight data. 

Although some of the factors mentioned above, such as axis systems and transformations 
as well as aspects of the equations of motion, may be found in textbooks, the treatment 
is generally not oriented toward flight testing. Some of the techniques used in deter- 
mining stability and control characteristics may be found in technical reports; however, 
limitations of the techniques occasionally may not be shorn. This paper attempts to 
bring all the factors together to provide a ready reference of pertinent information. 
It is, in fact, a greatly expanded version of AGARD Report 224*. 

It is the purpose of this paper to discuss the various factors that influence the 
determination of stability and control derivatives and other behavior characteristics 
from flight data. Included are illustrations of the application of flight derivatives 
to verification of predictions and to determination of aeroelastic effects, stability 
criteria, and flight guidance. This paper is intended not only for the practical 
engineer who is wo/king with flight data but also for the scientist who is attempting 
to develop new, sophisticated analytical techniques. 

* StabilityDerivative Determination From Flight Data by Chester H.Wolowicz and Euclid C.Holleman, 
October 1958. 
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Acknowledgement of investigators whose work has directly contributed to the present 
paper Is made In each section.    It Is recognized that many noteworthy works of other 
Investigators are not referenced. 

2.   AXIS SYSTEMS AND COORDINATE TRANSFORMATIONS 

2.1   Axis Systems 

In the study of the dynamics of the airplane,  as many as six orthogonal axis systems 
may be used simultaneously.    An understanding of theae systems or reference frames and 
their relation to the aircraft and its motions at various flight conditions is essential 
to the proper analysis of flight data.    Although a comprehensive treatment of axis 
systems may be found in Reference 1, a brief treatment of the axis systems is presented 
in this section. 

2.1.1   Body Systems 

The body axis system (xb, yb. zb) is body-fixed with its origin at the center of 
gravity of the airplane.    The   xb   axis is always parallel to the fuselage reference 
line and when the center of gravity is in the plane of symmetry, as it normally is, 
both the   xb   and   zb   axes are in the airplane' s plane of symmetry, as shown in 
Figure 1.    The   yb   axis is normal to the plane of symmetry; thus, the body system of 
axes is angularly Invariant with respect to the aircraft structure. 

Because of its angular invariance with respect to the aircraft,  the body axis system 
is an excellent frame of reference for mounting flight test instruments.    The orientation 
of the flight test Instruments and their consequent output relative to the body axes - 
especially the linear accelerometer and angular rate and acceleration sensors - make it 
convenient to determine,  from flight data,  stability and control parameters with respect 
to this reference fraoe.    Aside from convenience, this reference frame is the logical 
frame about which to orient rates, accelerations,  and the stability and control para- 
meters in the study of handling-quality criteria,  inasmuch as the orientation of the 
pilot is invariant relative to this frame. 

s* 's* zs) <s a special case of the body axis system. 

2.1.2   Stability System 

The stability axis system (x, 
Like the body system, the x8 and zg axes are in the plane of symmetry when the 
center of gravity is in this plane, and parallel to the plane of symmetry when the 
center of gravity is not In the plane. Unlike the body system, however, the xg and 
zs axes are angularly variant relative to the fuselage reference line. The zg axis 
is perpendicular to the resultant velocity vector and the xfl axis 1s parallel to the 
component of the resultant velocity vector projected onto the plane ot symmetry, 
shown in Figure 1. 

as 

The important parametric relationship between the body and stability axes systems 
is the angle of attack,    a , which is the angle between the   x     and   xb   axes (Fig. 1). 

The stability axis system Is commonly used in theoretical subsonic aerodynamics and 
subsonic wind-tunnel force and moment Investigations.    It is also employed, on occasion, 
in place of body axes in flight test investigations of longitudinal stability and 
control characteristics. 



2.1.3   Principal System 

The principal axis system (zr, y0, z0) defines the natural axes of rotation of the 
aircraft. They are the axes which result in maximum and minimum moments of inertia. 
The orientation of this axis system in the aircraft is a function of the mass distri- 
bution of the aircraft and will remain fixed as long as the mass and mass distribution 
remain fixed. When the lateral distribution of mass is symmetrical relative to the 
plane of symmetry, which is generally the case, the y0 axis will coincide with the 
yb axis, and the x0 and zQ   axes will lie in the plane of symmetry, as shown in 
Figure 1. 

The inclination of the xQ axis (Pig. 1) to the x axis of the reference axis 
system (generally body axes in flight test investigations) has a direct bearing on the 
inertial moments experienced about the reference axes &&  reflected in the product of 
inertia term IJ2, in the equations of motion and, hence, on the lateral stability of 
the airplane. 

When the principal axes are used as reference axes, as they occasionally are in 
theoretical and simulator investigations, they are used to simplify the equations of 
motion by the elimination of the Ixz term. 

2.1 A   Kind System 

The wind axis system is related to the resultant velocity vector and the plane of 
symmetry of the airplane. As shown in Figure 1, the xw axis is parallel to the 
resultant velocity vector and lies in the transverse plane of the stability axes 
(xsy8 plane). Consequently, the zw axis is coincident with the zg axis. The xw 
and yw axes coincide with their respective counterparts xg and yg when the 
aircraft has zero sideslip. 

The important parameters associated with the wind system are the sideslip angle, 
ß , and the angle of climb, y . By basic definition the angle of sideslip, ß , is 
the angle between the x, axis and the plane of symmetry and thus lies in the trans- 
verse stability axes plane, as shown in Figure 1. It should be noted that not all 
/3-sensors necessarily measure this ß ; this will be discussed in Section 5 on 
"Instrumentation". The angle of climb always lies in the vertical plane and is the 
angle included between the xw axis and the horizontal plane. 

2.1.5   Spatial Reference System 

The preceding axis systems are tied in with the plane of symmetry of the airplane 
with their origins at the center of gravity; as shown in Figure 1. To complete the 
systems of axes used, at least one inertial, space-fixed, axis system is required. 
In dealing with general motions of aircraft, this spatial system is generally earth- 
referenced to describe the motion of the airplane with respect to time for short time 
intervals. Such a situation is indicated in Figure 2, which shows the relationships 
of the various axis systems previously described and the relationship of the body axis 
system with respect to the spatial reference (xr, yr, zr). Shown in the figure are 
flight path y ,  angle of sideslip ß ,  angle of attack a , as well as the Euler 
orientation angles, '/' , 6 ,  and 4>   of the airplane' s body axes relative to the spatial 
axis system. This is shown in a much simpler format in Figure 3. The sequence of 
rotations of the Euler angles is important. Generally, the sequence of rotation is 



yp , 8 ,  and <p ; this means that the airplane is initially yawed, then pitched, and 
finally rolled. 

It should be noted that y - 6 - a  only when the aircraft is unbanked (<t> = 0). 

2.1.6   Perturbation Reference Frames 

In using perturbation theory in stability analysis, Euler angle perturbations may 
be considered to be superimposed on the unperturbed angles, as shown in Figure 4(a), 
with the result that the perturbed angles are \p + Ai// , 8 + A#, and </> + A</> , or 
they may be based on a secondary spatial reference frame which is the unperturbed 
airplane axis system (xt>0. yb0. Zb0). In Figure 4(b) the unperturbed body axes con- 
stitute the secondary spatial reference frame and are oriented to the basic spatial 
reference frame through the angles \p , 6 ,  and <p • However, the perturbed planes 
are oriented to the secondary spatial reference plane by At/;' , Ad' , and A0' , which 
generally are not the same as A«/» , A0 , and A0 . 

2.2 Coordinate Transformations 

Coordinate transformations are used so frequently in dynamic studies of aircraft 
that some consideration should be given to this subject. Literature on transformations 
is extensive and ranges from the classical mathematical treatments (Reference 2, for 
example) to engineering applications (References 3 and 4, for example). At this time, 
the most pertinent transformations are considered to serve as guidelines for other 
transformations that may be desired. 

2. 2.1    Transformation from Earth Reference 
Axes to Airplane Axes 

Consider Xr , Yr , 
ordinates x , y , z. 

and Zr as generalized vector quantities acting along the co- 
, respectively. The transformed vector quantities X , Y , Z 

acting along xb , yb , and zb axes, respectively, are obtained by performing three 
successive rotations, <// , 8 , and 4> , to define the airplane' s orientation with 
respect to the reference axes xr , yr , and zr through a transformation matrix [L] 

as follows 

Y \~ 

Y =    [L] Yr 

Z _Zr 

= m [&] M (la) 

1 0 0 

0     cos <p      sin 4> 

0     -sin 4>     cos <t> 
L 

cos # cos l// 

sin 4> sin 8 cos \p 
-sini/'cost/j 

cos if» cos 4> sind 
.    +sin</'sin<£ 

-sin 8 

0 

cos 8 

"cos 8     0 

0 1 

sin 8     0 

cos 8 sin«/' 

sin i/' sind sin <p 
+cosi//cos</> 

sini/>cosc/>sin 8 
-cosi/>sin<£ 

cos i/» sin 0 

-sin 0 cos </* 

0 0 

-sin 8 

sin-/>cosö 

cos <£^os6> 

(lb) 

(lc) 



2.2.2   Transformation from Airplane Axes to Earth Axes 

Since projection from airplane axes to earth axes is an inverse process of the 
preceding transformation,  premultiplication of Equation (la) by the inverse trans- 
formation matrix    [L]"

1
   results in 

"Xr "x 
Yr =   [L]-

1 Y 

w Z 

(2a) 

However, since the orthogonal projections on the airplane axes are being transformed 
to orthogonal projections on the earth axes, the inverse of the transformation matrix 
[L] in Equation (lc) is the same as its transpose; thus 

008 00081/) 

cos#sini/> 

-sin 8 

sin <t> sin Ocos^p 
-sini/icosc^ 

sin^sin^sin^ 
+COS</>COS<£ 

sin <p cos 8 

cos </< cos i> sin 8 
+sin</'sin<£ 

sin'/'cos^sinö 
-cos i/> sine/) 

cos 0 cos 6 

(2b) 

2.2.3   Relationship Between Airplane Rates   p ,  q , 
and   r    and Euler Rates   \p ,  8 ,    and   <t> 

It should be recognized from Figure 5 that,  although the airplane rate-vector 
quantities,    p ,  q ,    and   r   are orthogonal,  the Euler rate-vector quantities are not. 
Thus,  to obtain the relationships of   p ,  q ,  and   r   as functions of   \fi , 8 , and   4> . 
it is necessary to transform   \p , 8 , and   <j>   to components along   xr , yr ,  and   zr 

axes and then apply Equation (lc).    The first transformation is accomplished rapidly 
by applying Equation (2b) and considering each Euler quantity as a special case of 
transformation of a body axis quantity.    To wit:  in Equation (2b) both   4>   and   8   are 
considered zero for   \p   and   8 ,  and   <£   is considered zero for   <p .    Hence,  the re- 
sulting transformation to the reference axes will be 

cos 8 cos \p 

cos 8 sin </> 

-sin 8 

-sini/' 

cos^ (3a) 

Substituting Equation (3a) into Equation (lc) results In the following: 

X P 1 0 -sin 8 '$ 

Y = q = 0 COS0 sin 4>cos 8 e 
Z r 0 -sin$ cos 8 cos 4> t 

(3b) 

To obtain the inverse of Equation ,(3b)<f it is necessary to solve for the inverse of 
the transformation matrix since 4> , 8 ,  and ^ are not orthogonal and hence do not 
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penult the use of the transpose for the inverse.    This Is accomplished by solving for 
the Inverse matrix    [L]"1   In the relationship 

10     0 

[L]  &J"1   =     0     1     0   . 

0     0     1 

After solving for    [L]"1 ,  the inverse of Equation (3b) is determined to be 

(4) 

0 1 sin <£tan & cos0tani9 P 

6 = 0 COS0 -sin<p q 

t 0 sin 4> seed cos<t>sec8 r 

(5) 

2.2.4   Transformation of Euler Angles from the Body 
to the Stability Axis System 

If two different rotation series give the same starting and ending orientation, the 
matrices representing the rotation series are equal,  element for element,  In the two 
transformation matrices.    Thus, the Euler angles,    i//g , 8B , and   4>s , of the stability 
axes can be derived from the Euler angles,    \pb , &b , and   4^ , of the body axes by the 
following transformation matrix relationship 

w, = w.u. (6) 

where    [L!S   is the transformation matrix of Equation (lc) using stability axis orienta- 
tion angles   \p8 ,  &B ,  and   4>s   in place of   0 ,  6 ,  and   4> ,  and    [L] b   is the same 
transformation matrix using body axis orientation angles   \pb ,  &b ,  and   4\>   in place 
of   4> , 6 , and   <p , if the same successive rotation series is employed.    The trans- 
formation    [a]s   is the matrix representing the transformation from the body to the 
stability axis system, or 

W. 
cos a       0     sin a 

0 1      0 

-sin a      0     cos a 

(7) 

Upon performing the matrix multiplication shown by Equation (6), and checking 
corresponding elements in the equated results to obtain the most feasible elements for 
the desired result,  the following relationships are arrived at 

sini9„ 

sin0s 

sini// 

cos a sin &b - sin a cos 6b cos <^ 

sin <t\y cos 6b 

cos 6. 

cos acosöjjSinv^ + sin a (sini/^, cos «^ sin &b - cos</^ sin^j,) 
COS I 

(8) 



2.2.5   Transformation of Aerodynamic Coefficients to 
Various Axis Systems 

The following transformations are accomplished readily by employing Equation (2b) 
and replacing   </> , 6 ,  and   4>   in the equation by   -ß ,  a. ,  and   0 , respectively. 
Thus, to transform from body to stability axes, set   ß - 0 , thereby obtaining 

C„   =   Cc cos a + CN sin a 

<CJ>s   =   <V 

-Cc sin a + CN cos a 

(C.)      _ 
I s =   Cj cos a + Cn sin a 

(9) 

(10) 

<CB>s    =   CB 

(Cn)s   =   -Cj sin a + C„ cos a . 

Similarly, to transform from body to wind axes 

(Cx)w = -Cc cosacos/3 + Cy sin/3 - CN sinacos/3 

(C )w = Cc cosasinp + Cy cosp + CN sinasin/5 

(Cz)w = -CL    =   Cc sin a - CN cos a 

(Cj)w = Cj cosacos/S + CBsin/3 + Cn sin acos/0 

(CB)W = CB cos/3 - Cj cosasin/3 - Cn sinasin/3 

(Cn)w = Cn cos a - Cj sin a   . 

Also,  for stability to wind axes,  set    a = 0 ,  obtaining 

(Cx)w   =   -C„cos/3 + (Cy)8sin/Ö 

(Cy)w   =   CDsin/3 + (Cy)8cos/? 

<Cz>w   =   -CL 

(cl\   =   (Cj)scos/3+ (CB)8sin/S 

«Vw   =    «V8 cos/3- (Cj)8 sin/3 

To transform from wind to stability or body axes, or stabilit)' to body axes, use is 
made of Equation (lc). 

(ID 



2.2.6   Transformation of Derivatives 

The transformation of derivatives from one axis system to another goes beyond pure 
kinematic transformations. Longitudinal derivatives are relatively simple in their 
transformations; lateral'directional derivatives are more complex in transformations. 
The several examples will illustrate the procedure to obtain derivative transformation. 
Influence of factors such as power is not considered at this time. 

Transformation of longitudinal derivatives is accomplished by direct differentiation 
of the coefficient equations. This is possible because a and q are not modified by 
the axis system used. For example, to obtain the derivative of CL with respect to 
a in a transformation from body to stability axes, differentiate the equation for 
C, in Equation (9) obtaining, on a per radian basis, 

CLn 
-CCasin a + CN(xcos a - C„ (12) 

The transformation of the lateral-directional derivatives is more complicated, inas- 
much as the angular rate variables r and p are affected by the transformation. At 
this time, sideslip angle, ß , is not considered to be affected by the transformations 
because of its definition; however, the type of /3-sensor used in flight tests - whether 
it be a vane, floating cone, or ball nose - does have a bearing on the interpretation 
of the ß   readout and the meaning of the derivatives with respect to the sensed ß . 
This is discussed in Section 5. 

CoiPider the transformation of lateral-directional derivatives from the stability 
to thr body axis system. Transformation of the yawing and rolling moment equations is 
accon,) 11 shed by 

N = (N)8 cos a + (L)ssina 

L = (L)8cosa - (N)s sin a , 

where   L   and   N   represent rolling and yawing moments, respectively. 

However, 

(N)s 

(D8    = 

r«b   ,    ,n    .,     ^   .    ,n     ,      P8b   A   ,„     x   s] <Caß)*ß + (Cnr)8 -i- + (Cn/3)s— + (Cnp)8 -A- + (Cn?)8S I gSb 

r b /3b p b 1 
(Ciß)sß + (Clr)8 -i- + (Cnß)B — + (Cip), -A- + (C/5)8S| gSb 

(13) 

(14) 

It will be necessary to express  Arg   and  Ap8   in Equation (14) as functions of 
Ar   and  Ap   using the transform 

r cos a - p sin a 

p cos a + r sin a 
(15) 
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Upon substituting Equation (15) into (14) and Equation (14) into (13), and regrouping 
terms, 

N 

Üb 

+ |(CEr)8cos2a + (Cjp)ssin2a+ (CBn + Cir)3sin -np * wr; 
"jrb 
J 2V 

ßb 

pb 

2V 

and 

KCn^sCOsa + (Ciß)a sin a\ß + 

+ KCn^scosa + (C^gslna — + 

+   (Cnp)8cos2a- (Cir)8sin2a- (C„r - Cjp)8 sin acos a 

+   (Cnj)sCosa+ (Cls)sSina 8 

L r lo —   =     (Cl^s cos a - (Cn^g) s sin a p + 

+    'C/p)8cos2a + (Cnr)8sin2oc - (C„p + Cjr)8 sinacos a  — + 

T "I /3b 
+    (Ci^s cos a - (Cn/g)8 sin a   — + 

'      (16a) 

[< +    (Cj Jscos'a- (C„_)8sin<a- (Cn   - Cj )8 sin r      -'p' 
-lrb 

, a cos a  — 
J 2V 

[' +    (Cls)8cosa- (Cns)8sin 2s. 

>      (16b) 

Summaries of transformations of aerodynamic derivatives from stability to body axis 
system,  and vice versa,  are given in Tables I and II. 

2.2.7   Transformation of Moments of Intrtia from 
One Axis System to Another 

Although this topic is covered in applied mechanics literature,  an illustrative 
example is given as a refresher.    Also included are tables of transformations for 
ready reference. 

To obtain   IXg    in terms of body axes quantities, use is made of the fundamental 
relation 

i*s = J"<y.+ z8> * (17) 
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Substituting the following transform into Equation (17), 

xg   =   x cos a + z sin a 

zs   =   z cos a - x sin a 

and expanding, 

IxB   =    [/(*£ + Zjj) dm] cos2 a + j/(y£ + x£) (tail sin2 a - 2r'xbzbdm| sin a cos a 

=   Ix cos2 a + I2 sin2 a - 2IJZ sin acos a 

=   i (Iz + Ix) - i (Iz - Ix) cos a - IIZ 3in 2 <x  . 

(18) 

3. EQUATIONS OF MOTION 

The equations of notion of an airplane as found in texts on aircraft dynamics (such 
as Reference 5) and as normally presented in the technical literature, although prosaic 
in appearance, do contain complexities in the significance of the individual terms. 
The following discussion is intended to acquaint the reader with the scope of the 
complexities which may be encountered and which should be recognized and managed in 
dealing with the equations of motion. An understanding of this matter is important 
in applying the equations to derivative determination from flight <<ata. 

3.1 Inertial Quantities 

In all considerations of the inertial portions of the equr ins of motion, the axis 
system used has a direct bearing on the expressions for inertial forces; the degree 
of asymmetry of the mass distribution of the aircraft and the magnitude and violence 
of the aircraft noti/ws affect the format of the expressions for inertial moments. 
It is assumed, for the purposes of this paper, that the aircraft behaves as a rigid 
body. Where aeroelasticity is a factor, it is assumed that proper precautions will 
have been taken to provide assurance that the rigid-body concept will provide a good 
degree of approximation. 

Inertial quantities arise from the Inherent action of the aircraft whose various 
components act as a rigid-body assembly and from the rotating masses attached to the 
aircraft. 

3.1.1   Inherent Aircraft General Inertial Force Expressions 

Inasmuch as our interest lies in the analysis of flight test data oriented to the 
body axis system, the inertial force expressions applicable to this axis system and 
for all attitudes of flight are 

Xj = m(ü + qw - rv) 

Yj = m(v + ru - pw) 

Zi   -   m(w - qu + pv) . 

(19a) 

(19b) 

(19c) 
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If the stability axis system were employed as the reference instead of the body axis 
system,    qw - pw = w = 0 ,  inasmuch as there is no linear velocity component along the 
z-stability axis. 

3.1.2   General Inertial-Moment Expressions 

For the general case where the principal axes are asymmetric to the various planes 
of the reference axes,   the inertial-moment expressions are 

Lj    =   Ixp + ^(rp - q) - IX2(r + pq) + Iyz(r2 - q2) + (Iz - Iy)qr (20a) 

Ui   =   Iyq + Iyz(rq - r) - I^r + qr) + Ixz(p2 -- r2) + (I, - Iz)rp (20b) 

Nj    =    Izf + Ixz(qr - p) - Iyz(q + rp)  + I^q2 - p2) + (Iy - Ix)pq . (20c) 

Fortunately,  situations involving general asymmetry of the aircraft are rare. Normally, 
the vehicle will have a mass distribution symmetrical relative to the xz-body plane of 
symmetry,  with the result that the principal y-axis coincides with the y-body axis. 
Under such circumstances,    ITV = T     = 0   and the general inertial-moment expressions 
reduce to the following normally employed form: 

Li    =   TxP " 1xz(i + PS) + dz - Iy)qr (21a) 

Mj    =   Iyq + Ixz(p2 - r2) + (Ix - Iz)rp (21b) 

Nj    =   Izr - Ixz(p - qr) + (Iy - Ix) pq . (21c) 

The inertial expressions in Equations (21a,  b,  c) are nonlinear and thus not suitable 
for use in the derivation of closed-form stability equations.    However,  they are re- 
quired in analog or digital computer study of the motion of the aircraft in general 
or violent maneuvers and in the analog matching of flight data from such maneuvers 
in attempts to determine the effective values of the stability and control derivatives 
for the maneuver. 

In violent maneuvers,  the terms involving   pq   and   rp   are particularly important. 
These terms,  as well as   qr ,  are gyroscopic terms.    Modern high-performance aircraft 
tend to have low values of   I%   compared to   I     and   Iz ,  with the result that gyro- 
scopic action represented by   (Ix - I2)rp   and    (Iy - Ix)pq ,  in particular,  has been 
responsible for the uncontrollable,  catastrophic roll-coupling behavior of at least 
one jet aircraft after a deliberate high roll rate input. 

When the motions of the aircraft are small or gradual,  the inertial-moment expressions 
may be simplified to 

(22a) 

(22b) 

(22c) 

h = I«p- "W 
Mi 

= 
^ 

Ni = v- -w> 
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3.1.3   Small-Perturbation Inertial Expressions 

The classical approach to the study of aircraft dynamic stability and control involves 
the use of small disturbances (perturbation»). Restricting the motions to small de- 
viations from steady-state conditions allows the elimination of non-linear terms from 
the inertial expressions. Such motions are useful in defining the stability, control, 
and handling qualities of the aircraft, and the pilot effort or autopilot character- 
istics required to control the motion. It has been found that the use of small - 
perturbation theory gives good results and permits the development of analytical 
expressions. 

To arrive at the small-perturbation inertial expressions, replace the individual 
acceleration and velocity terms in Equations (19a, b, c) and (22a, b, c) by accelera- 
tions and velocities made up of disturbances superimposed on equilibrium conditions 
so that ü , etc., is replaced by ü + Aü , etc., respectively; expand the product 
terms; neglect the second-order quantities (ArAu, for example); and subtract the initial 
conditions from the final resulting conditions. Tne resulting small-perturbation 
inertial expressions are 

AXj = m[Aü + wAq + qAw - rAv vAr] (23a) 

AY, ilAv + uAr + rAu - wAp - pAw] 

AZj = m[Aw - uAq - qAu + pAv + vAp] 

(23b) 

(23c) 

and 

AL, 

AM, 

I^P 

IyAq 

IxzAr 

ANi = >A-I^P 

(24a) 

(24b) 

(24c) 

Equations (23a, b, c) show that lateral-directional-mode perturbations Av , Ar , 
and Ap appear in the longitudinal-mode equations Axi and Azi , and that the 
longitudinal-mode perturbations Au and Aw appear in the lateral-directional-mode 
equation Azi . This coupling of the two modes can normally be minimized to permit 
practical use of the uncoupled practical approximation of Equations (23a, b, c) shown 
in Equations (25a, b, c). This m'limization is achieved in flight test maneuvers such 
as elevator pulses for perturbation of the longitudinal mode and rudder or aileron 
pulses for perturbation of the lateral-directional mode initiated during steady wings- 
level or steady turn flight. 

Ax, s m[Aü + wAq] (25a) 

AYA   =  m[Av + uAr - wAp] 

AzA    -   mfaw - uAq - qAu] 

(25b) 

(25c) 
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3.2   Gyroscopic Couples of Rotating Masses 

Spinning masses mounted on the aircraft - such as propellers and rotating elements 
of engines - possess angular momentum relative to the reference (body) axes and pro- 
duce gyroscopic couples on the aircraft which could be significant, as was the case on 
the X-5 airplane6.    Normally,  the gyroscopic couples are negligible; however, the advent 
of vertical-rising aircraft with tilting engines and the increase in size of propulsion 
units on high-performance aircraft make it inadvisable to arbitrarily ignore this 
coupling. 

For a rotating mass having a rotating axis in or parallel to the xz-plane of symmetry 
but at an angle   &rm   to the x-body axis (Pig.6),  it can be shown from the moment of 
momentum relation,    ü> x ff   and   H = IrmQ , that the gyroscopic couple about each of the 
body axes is 

Lrm    =   1«z-rH
y    "   -Irmn1sinörm <26a> 

MrB   =   rHx-pHz   =   TrBQ(reo8 0rB + psinV <26b) 

Nrm    =   pHy-qHx    =   -IrBnqcos0rm   . (S6c) 

These rotating mass contributions are added to the inertial moments expressed by 
Equations (20a, b,  c),   (21a,  b,  c),  and (22a,  b,  c). 

For small perturbations of the aircraft, the perturbations of tbr. gyroscopic couples 
resulting from the rotating mass are expressed by 

ALr»    =   -Irm^QSin0rill (27a) 

AMrm    =   Irmft(Arcos0riB+APsin0rill) (27b) 

ANrm    =   -IrB^qcos0rm   . (27c) 

These perturbations are added to Equations (24a,  b,  c) when significant,  in which 
case, Equations (24a, b,  c) will become inter-dependent because of the coupling of the 
longitudinal-mode and lateral-directional-mode moment equations.    It should be noted 
that,  if   9ra   were variable,  the above relations in Equations (27a,  b,  c) would have 
required further expansion and introduced an additional degree of freedom in the form 
0f    Aör.    • rm 

3.3 Gravitational Force 

The gravity force will not contribute to the moment equations as Ions as the origin 
of the axis system is at the centre of gravity. 
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3.3.1   Components of Gravity Force 

With the gravity force W acting along the zr axis, the expressions for the 
components of gravity force acting along the body axes are readily deduced from Figure 
4(a) to be 

! 

Xg = -Wsind (28a) 

Yg = Wcosdsin<£ (28b) 

Zg = Wcosdcos$ . (28c) 

These components are subtracted from the inertial-force equations (19a, b, c). 

3.3.2   Small Perturbations 

Snail perturbations of the components of the gravity force may be based on Euler 
angle perturbations superimposed on the unperturbed angles using the same basic 
reference frame, or on Euler angle perturbations relative to a secondary spatial 
reference frame made up of the unperturbed aircraft axis system as discussed in 
Section 2.1.6. and as shown in Figure 4(b). In this second approach, unperturbed 
body axes are used as the secondary spatial reference when interest is primarily in 
perturbations of body-oriented flight test data. 

Using the first approach, replace 9   and 4>   in Equations (28a, b, c) by d + Ad 
and 4> + A</> , respectively; expand the resulting trigonometric functions, consider 
cosA_~ l , sinA _~ A_, and A_A_~ 0 ; and subtract the initial conditions from 
the result. The resulting small-perturbation expressions are 

AX. 

AZ„ 

-WAd cos e 

Ayg   =   W(Ad cos 8 cos <t> - Ad sin 6 sin <p) 

-W(A<£ cosdsin<£ + Ad sind cos <£) . 

(29a) 

(29b) 

(29c) 

In the second approach, using the unperturbed body axes as the reference and 
&!)'  , AÖ' , and A<£' (Fig. 4(b)) as the Euler angles of the perturbations, the per- 
turbations of the components of gravity are obtained by using Equations (lc) and 
(28a, b, c). In Equation (lc) the generalized quantities Xr , Yr , and Zr are 
replaced by the expressions for Xg , Yg , and Zg , respectively, as given in 
Equations (28a, b, c); and the Euler angles \p , 8 ,  and 4>   are replaced by Ai//', 
Ad' , and A<£' , respectively. The generalized quantities Xb , Yb , and Zb in 
Equation (lc) are now equal to. (Xg + Axg), (Yg + Ayg), and (Zg + Azg), respectively. 
By subtracting the initial conditions (Equations (28a, b, c)) from the resulting 
perturbed equation after considering cosA_^ i , sinA_2*A_ , and A_A_2* o , 
the perturbation expressions for this second approach will have the following form: 

Axg = W(co*d sin0 A<//' - cos dcos# Ad') 

AYg = W(sinAi//' + cosdcos^ A0') 

AZ. -W (sind Ad' + cosdsin<£A</>') . 

(30a) 

(30b) 

(30c) 
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The advantage in using Equations (30a, b, c) instead of Equations (29a, b, c) is 
that, for small perturbations during highly banked as «ell as wings-level flight, 

Ai//' ~ /Ar dt (31a) 

A(9' ~ /Aq dt (31b) 

A<£ ~ /Ap dt . (31c) 

To apply such simple integrations to Ai// , Ad , and A# in Equations (29a, b, c) 
requires that 4>   and 6   be small. 

Both Equations (29a, b, c) and (30a, b, c) show coupling of the longitudinal and 
latoral modes. In both sets of equations, the longitudinal modes (Ax and Az ) 
are uncoupled from the lateral-mode perturbations by performing a longitudinal pulse 
when initial conditions are steady-state. In performing a lateral-directional pulse 
from steady-state conditions, the lateral-mode expression (30b) is inherently un- 
coupled from longitudinal perturbations, whereas expression (29b) shows interaction 
of the longitudinal perturbation AÖ which is excited by the lateral-directional 
pulse. 

When banked and climbing flight are being considered, it may be surmised from the 
preceding that Equations (30a, b, c) are more amenable than Equations (29a, b, c) to 
theoretical stability analysis and for analysis of flight data when longitudinal or 
lateral pulses are applied from initial steady-state conditions. 

3.4 Aerodynamic Derivatives 

In stability and control investigations based on flight data, the previously dis- 
cussed inertial, gyroscopic, and gravitational quantities are normally equated to 
aerodynamic parameters only. Ibis is done primarily to facilitate the analysis of 
flight data. However, in doing this, the parameters are no longer pure aerodynamic 
parameters, inasmuch as they will have been modified by influences arising from power 
and aeroelasticity as well as possible other sources. Generally, these influences 
can be accounted for and the pure aerodynamic parameter arrived at. 

Inasmuch as the equations are set up under the principle of super-position of 
influences, situations may be encountered in which the accuracy of the results obtained 
from the equations will deteriorate. This is of particular concern where very rapid 
control inputs are encountered. Also, inasmuch as the aerodynamic parameters are in 
the form of derivatives, care must be exercised not to exceed the validity of the 
derivative. 

Finally, there are some limitations in combining several of the derivatives, 
Cnr - Cn/a , for example. 

Consideration is given at this time to the above-mentioned factors which have 
significance in the utilization of aerodynamic derivatives in the equations of motion 
and in the determination of the derivatives from flight data. For convenience, the 
conventional derivatives are tabulated overleaf. 
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Longitudinal Derivatives 

Cl»u 

2C„ 

3u      cosacos/3 

3CN 
CN« = 17      CN« = 

3C
N c        _       9CN 

'(f) '(f) 
CNS   = 

3C, 

38 

3r 
Cc.   =  V—£ + 

2C„ 3C„ 

Bu      cos acos/3 a       3a "ca 

3C„ 

•(S) 
c     = -** -CS 

BCg 

3S 

3cm            2C„, 
C.„  =  V-JS-+ a 

3cm         P       _  m 
3u      cos acos ß a       3a 

3C_ 3C. 

f)    *"'© 3S 

Lateral-Directional Derivatives 

°Jß 3/3 
uy/3 

© 
3c„ 

*p 

3c. 

■(£) 
^ys !5L 

3S 

C|4 

3Cj 
clfi 

3C 

3Ä 
\2V, 

C/, 
3c, 

3 (^ 
V2V> 

ciB   = 
3C 

3^ 
\2V> 

Cl> 
3Cj 

3? 

3cn 

*"   3   3j '/J Cn^   = 

\2V 

Cn, 
3C„ 

3^ 
2V 

Cnr 

3C„ 

3f'£ 
2V 

-ns 3S 

3.4.1   Significance of the Derivatives 

Tlie aerodynamic derivative provides the slope of the curve of the aerodynamic force 
or moment coefficient,  as the case may be,  with respect to an independent variable - 
other independent variables being considered constant - at a particular value of the 
variable.    In analog simulation studies, nonlinear curves are reduced to straight-line 
segments, each segment being valid only for an incremental range of the independent 
variable. 

In the inverse problem of obtaining derivatives from flight data,  the derivative is 
valid only for the incremental range of disturbance oi the independent variable,  at the 
steady-state condition, used in determining the derivative.    An example involving a 
nonlinear variation of   Cn   with   ß   is shown in Figure 7.    In this example, the 
origin, 0, represents steady state and    (^ß)x   and    (A/3)2   represent two disturbance 
ranges of the variable.    It will be noticed that the derivative obtained may differ 
appreciably in magnitude because of the nonlinearity of the curve in the disturbance 
ranges   (A/3),   and   (A/3)2 . 
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.7.4. 2   Unsteady Flow Effects 

3u i?***'"8* 

s   fy^+        2CN     Algs, 
\    Bu      cos acos /?/ V 

(32) 

1 

. ; 

In dealing with the derivative concept in accounting for the influence of Independent 
variables on an aerodynamic force or moment coefficient, for example 

Arb     A,?b    Apb 
ACn = cn^A5 + Cnr— + Cnj— +Cnp— +C„SrASr . 

it is assumed that each derivative contributes to the total as though it acted alone 
and that the aerodynamic force and moment coefficients are functions of the instan- 
taneous values of the disturbance displacements and velocities, control angles, and 
their derivatives. Further, the derivatives are based on the variation of the co- 
efficients under near-steady-state conditions of the variable. Although the deriva- 
tive concept of treating aerodynamic force and moment perturbations has generally ,< 
worked well, the application to situations of rapidly changing independent variables 
(unsteady flow conditions), as in the case of a very rapid control displacement or a j 
sharp-edged gust, does not necessarily give correct answers. This is due to apparent I 
mass effects of the air, whose inertia will not produce instantaneous changes in 
circulation and consequently causes aerodynamic lag. This is illustrated in Figure 8, 
which shows the variation of CN as a function of nondimensional time, c/2V , as a 
result of a step gust. The derivative concept would show a constant slope curve, 
whereas the actual variation of CN(t) would show a lag at the initial instance of 
the step gust input. 

When an aircraft is oscillating sinusoidally, the lift will follow the sinusoidal 
variation in angle of attack but will be of smaller magnitude and there will be a 
phase difference between the lift and angle of attack. This unsteady flow effect is 
a function of reduced oscillating frequency, a>c/2V , as well as Mach number. Although 
the magnitude of Cp|a is not normally affected appreciably for normal airplane 
osci^iting frequency conditions, the phase lag may bring about a large change in CN^ . 
This may be of considerable importance in pitch damping of tailless aircraft (Ref.7). 

In general, all the aerodynamic derivatives behave in a similar manner. This, it 
is seen that attempts to use the derivative concept in analog simulators involving 
very rapid changes of the independent variables can lead to errors; conversely, deter- 
mination of derivatives from flight data requires awareness of the maneuvering or 
unsteady flow factors mentioned which can influence the magnitude of the derivative. 

i 

3.4.3   Derivatives with Respect to   u 

Aerodynamic derivatives with respect to u are of concern when phugoid modes are 
being investigated. Because this mode is often overlooked, these derivatives are 
generally unfamiliar. Thus, some consideration is given to them at this time for 
future reference as needed. Consider -Z = CNqS . Differentiation with respect to 
u shows 

BZ   3cN        3v 
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where   Bv/Bu = l/(cos acos/9)    fron   u = Vcos/Scosa .    The  Az   due to change in   u 
is now expressed as 

_     qS 
" ^i    "   CNU "7 (33) 

Since 

2C„ 3cM 

3u      cosacos/Sy 

is more than simply the variation of the normal coefficient with respect to velocity, 
u , it can fittingly be called the effective aerodynamic derivative of   C„   with respect 
to   u , or   CNu 

with respect to 
.    Similarly, the effective aerodynamic derivatives of 
u   are 

3CL 2C_ 

3u      cos a cos/3> 

or   5i»u   and   Cc„ .  respectively. 

and 
2C„ \ 

f  ^c 
V ^ +  ~—=■] 

V    du      cosacospy 

and   C„ 

J.4.-5   Z)erti>atives with Respect to   q   and   d, 
and   r    a/«f   p 

It is customary in reporting flight-determined derivatives, wherein transient 
oscillations are used in the analysis,  to pair the derivatives varying with respect 
to   q   and   a   and those varying with respect to    r   and   p .    For example 

Aqc Adc Aqc 
"■q -^ + ^ä-^-   -    (Cmq + <W — 

and 

Cn, 
Arb 

2V 
+ C, 

A/?b 
nß- 2V 

Ä   (Cnr - Cn/§) 
Arb 

"iv" 

(34) 

Inasmuch as the phenomenon involving   d   is different from that involving   q ,  and 
the phenomenon involving   r   is different from that of   p , the pairing is valid only 
when small-perturbation transient oscillations of a maneuver are involved and satisfy 
the linearized equations of motion.    In addition, although the pairing works well for 
the longitudinal equations whether or not stability or body axes are employed, the 
validity of the paring for the lateral-directional equations is dependent on the use 
of the stability system of axes;  if body axes are used, the pairing of   r   and   p 
derivatives is permissible at low angles of attack. 

In performing a small-perturbation longitudinal transient oscillation,  the center 
of gravity of the aircraft tends to move along the flight path as though it were not 
disturbed;  consequently, the amplitude ratio    |Aq|/|A&|    is similar to 1,0 and the 
vector quantities  Aq   and  Ad   are approximately in phase.    Thus  Aq   can be sub- 
stituted for  A« .    In the case of a lateral-directional (Dutch roll) transient 
oscillation relative to the stability axis system,  the aircraft,  in tending to 
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maintain its center of gravity along the flight path as though it were not disturbed, 
will experience Ar ^-A/3 , inasmuch as r and ß   are now referred to the same axis 
system. Thus, the amplitude ratio |Arl/lA/3l is similar to 1.0, but the phase relation 
is approximately 180°; consequently, the sign of the A/3 derivative is changed to minus 
in pairi.g r and ß   derivatives. In dealing with the body axis system, |Ar|/|A/?| 
and $tß   can differ appreciably from 1.0 und loO0, respectively, at high angles of 
attack. 

It is reiterated that pairing the derivatives is valid only for the special con- 
ditions mentioned. On the other hand, it has not been possible to solve for the ä 
derivatives independent of the q derivatives, and $   derivatives independent of r 
derivatives, from flight data with any degree of consistency and confidence. 

3.U.5   Power Effects 

The propulsive system may have a significant influence on the stability as well as 
the trim of the airplane. Its force and moment contributions to the equations of 
motion may be presented as derivatives in the equations. If the power contributions 
are not accounted for by their own derivatives, they will be reflected in the magnitudes 
of the aerodynamic stability and control derivatives which will then become, in essence, 
effective derivatives. A comprehensive treatment of power effects is complex and beyond 
the scope of this paper. Only major effects are considered, to show how propulsion 
system derivatives contribute to the effective values of the aerodynamic derivatives. 

It is essential at this time to emphasize an important point regarding consideration 
of the effect of power on stability. True inherent stability of the aircraft with 
power on can only be evaluated by keeping the settipgs of the engine and propeller 
controls fixed during the maneuver. Any maneuver that entails alteration of the pro- 
pulsive system controls during the maneuver will not provide a true index of the 
stability from an analysis of the time history of the maneuver. 

Influence of propellers:  Influences of propellers consist of direct propeller effects 
and also indirect effects due to the propeller slipstream on the wing-fuselage and the 
tail surfaces. 

Direct propeller effects:  Direct propeller effects, as shown in Figure 8, consist 
of a direct thrust T acting along the thrust axis, and a transverse forve (Y) , 
as well as a normal force (-Z) , perpendicular to the thrust axis in the plane of 
the propeller disk. The thrust T is a primary function of a and V . Quantitative 
determination of the normal and transverse forces (-Z)p and (Y)  may be accomplished 
by solving for (CNä)P and (Cy/3)p , as discussed in References 8 and 9. Actually, 
the derivatives are of more concern for the purposes of this paper than the actual 
magnitudes of the forces. 

The contributions of the direct propeller effect (Fig.9) on longitudinal and lateral 
stability are reflected in 

(Cma)p = CTa^£ + (CNa)p 
X-£ (35) 

and 

«Vp = ~(Cyß)v ^ • (36) 
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It is opportune to note the influences of the direct propeller effects on 
«hen performing a transformation from the body to the stability axis system. 

CL(X 

The net 
effective   CL   and   CD   of the aircraft,  in the absence of angular rates and for fixed 
controls,  can be expressed as 

Aero Power 

cos a       -sin a 

sin a        cos a 

sina,, 

-cos a„ 

cos a„ 

sin a. 

CN 

<Cn>p 

(37) 

where the direct thrust is assumed to be vectored parallel to the body x-axis and 
<x_ = a + e_ P     P Differentiating Equation (37) with respect to a for C; •-a 

(38) CL«   =    (CNacosa - CC(Xsina) - CD + CTasinap + (CNa)pcosa   , 

where   CD   is the effective value as shown in Equation (37). 

Sti'dy of Equation (38) shows that power increase? the effective   CLä   of the aircraft. 
On low-performance aircraft,  the power effect is generally negligible. 

Propeller slipstream:  The propeller slipstream influences the distribution of the 
aerodynamic forces on the aircraft structure as a result of (i) the increase in local 
velocity over the structure due to and in the propeller slipstream,  and (ii) upwash and 
downwash effects of the rotating slipstream of the propeller.    The slipstream can be 
stabilizing or destabilizing,  depending upon the direction of rotation of the propeller 
and the position of the tail relative to the rotating slipstream.    Analytical techniques 
to quantitatively account for the propeller slipstream effects on the stability of the 
aircraft have not been satisfactory.    Generally,  powered models are used to provide 
engineering data on new designs. 

Influence of jet enpines: The jet engine has the counterpart of the effects that 
were shown for the propeller.    It provides a direct thrust,  shows normal and transverse 
force effects at the entrance of the intake duct,  and - depending on geometry - is 
capable of influencing the equilibrium and stability of the aircraft by inflow of air 
into the jet exhaust.    Unlike the propeller,  the influence of the jet engine on the 
tail surfaces,  and hence the stability of the airplane,  is amenable to analytical 
techniques to quantitatively account for these effects. 

The thrust produced on the aircraft equipped with a jet engine is equal,  as shown 
in Figure 10,  to the vectorial change in momentum of the air and fuel passing through 
the engine plus the resultant of the pressure forces acting across the inlet and outlet 
areas.    Where the intake and exhaust are in line with the thrust axis and the x-body 
axis 

T   =   CrqS 

=   nijVj - ir^Vcoscxjj + (pjAj - pjAj) (39) 
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A change in direction of the momentum vectors at intake or exhaust relative to the 
x-body axis brings into being forces normal to the body x-axis.    Where the jet exhaust 
is parallel tr the x-body axis,  the component of the normal force in the xz-plane of 
symmetry is expressed by 

(-Z)p   = (CN)p qS 

maVslnap 

. fc 
Vsim 

V      QS 
qS 

(40) 

Similarly,  a normal force in the transverse plane Is ii.< evidence during a sideslip, or 

(Y)p   =    (Cy)pqS 

=   -maVsin/S 

n^V sin /3\ 

QS 
qS 

(41) 

A jet-induced inflow toward the jet axis at the tail may affect the stability of 
the aircraft if design precautions have not been taken.    As a result of the jet exhaust 
spreading out behind the engine,  a turbulent mixing of the air outside of the jet 
stream with the jet exhaust takes place along the boundary of the jet stream (see 
Figure 11).    The drawing ir of the air from outside the stream is jet-induced inflow. 
A horizontal tail located in this jet-induced inflow field will be subjected to jet- 
induced downwash angles.    Thus,  the angle of attack of the tail would be modified and 
pitching moments would be created that would affect the stability as well as the 
equilibrium of the aircraft. 

The quantitative effects of the jet-induced downwash at the tail can be calculated 
by using the theory developed by Ribner10.    This theory allows for curvature of the 
jet due to angle of attack of the aircraft.    It is also applicable to determination of 
jet-induced sidewash of the vertical-tail surfaces at asymmetric power conditions or 
during sideslip. 

In the abs^ce of suitable design precautions,  such as boattailing of the exhaust 
to shield the     il surfaces from the inflow effect,  the change in pitching and yawing 
moments resulting from the jet-induced downwash    (Ao^ t )p   and sidewash   (Ao^ t )    , 
respectively,  can be expressed by 

(AMh.t.>i =   <Cna)h.t.«H.t.> P5tstxh.t. (42) 

<ANv.t.>p   =   -<cNa>v.t.<A<Yt.>p5tStxv.t. (43) 

where   x h.t. and *v.t. are negative values with tails aft of the center of gravity. 
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The variations of forces and moments due to the jet engine are primarily functions 
of a , ß , and V , assuming that control settings are constant. Prom the preceding 
it may be readily deduced that 

_                    m.V cos a_ 3a_ qfSv  f   3(ah f )„ 
I(C„a)p   =  -1— E J-E + "•« ^•   *      * -*•        n.t.'p ——*-=r* + (CNa)h.t. -^~ 

qS 3a a qS 3a 
(44a) 

z„     m„Vcoso„x„3a„ SA.t.'h.t. B("h.t.>p       (44b) 
^ z_     m^v cos a_ x_ o« 

qSc 

2«VP 
maV cos/3 

(CN(x)v.t. 
5tsv.t. 3K.t.>{ 

qSb 3a 
(45a) 

2<VP 
maVcos/3xD qt

sv.t.xv.t. 3K.t.>i 
 ~— -r1 - (CiOv. t.  —  

qS        b a qSb 3a 
(45b) 

where   xp   is positive when the air intake is forward of the center of gravity and 
xy t     is negative wii;h vertical tail aft of the center of gravity, and 

/ 3C, 2C, 
(Ccu)p   =   -   V 

on      cos a cos pi 

(Cinu)p 
2C„ \ 3C„ 

,    3u      cos a cos ßj \ /p 

(46) 

(47) 

where 

z„     maVsin a„ x„ 

c qS 
(C

m
}p = ^^^Pi^^A.t.), qSc 

(48) 

and 

3.J ■■ ,.   3cT zp  ( 
ma sin «p xp 

Wn 3u   c            qS        c 
(49) 

3.4,6   Aeroelastic Effects 

The preceding discussions assumed that the aircraft was rigid.    This assumption was 
permissible in the past; however, modern aircraft flying at high speed under dynamic- 
pressure conditions are subject to degrees of flexibility of component parts which 
cannot, at times,  be ignored and which affect the stability of the aircraft11"16.    The 
contribution of aeroelastic deformation to derivatives is dependent primarily on 
aircraft geometry and dynamic pressure as well as structural rigidity and Mach number. 
Aeroelastic phenomena may be considered in two separate parts: static and dynamic 
peroelastic effects. 
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When aerodynamic loading takes place at a sufficiently slow rate in comparison to 
the natural frequency of vibration of the pertinent part of the structure to permit 
the assumption of static deformation cf the structure, the influence of aeroelasticity 
can be accounted for by modifying the derivatives. Illustrations of steady-state 
distortions which have been serious in the past are aileron reversal and wing divergence. 
Today, such factors as thinner wings and more flexible fuselages have magnified the 
effects of structural flexibility on stability and control of aircraft. 

If the aerodynamic loading frequency were to approach the structural frequency of 
the pertinent component, me structural deformation would produce perturbations in the 
aerodynamic forces and moments which have to be accounted for by the introduction of 
additional appropriate derivatives in the equations of motion and the introduction of 
additional equations, which would be elasticity equations. 

3.It. 7   Other Effects 

The preceding discussion has included major factors which influence analysis and 
account for discrepancies between wind-tunnel and flight data; however, it does not 
account for all factors. Other factors could include jet pluming, flow separations 
associated with movements of shock waves, and fuel sloshing. Since one never knows 
what phenomena will occur, it is imperative to have an open min^ in trying to account 
for discrepancies in comparisons of data. 

3. 5 Summary of the Equations of Motion 

The various dynamic relations which have been discussed are pertinent *o an under- 
standing of the equations of motion and the conditioning of data to the equations. The 
influence of power and structural flexibility on the various aerodynamic parameters 
(coefficient and stability derivatives) was stressed, and it was pointed out that the 
net result cf these influences, or modifiers, was the emergence of an effective aero- 
dynamic parameter. 

It is easily recognized that the introduction into the equations of motion of each 
individual modifier to the aerodynamic parameters would result in a cumbersome set of 
equations. It is more practical to let the normally accepted stability symbol (Cna, 
for example) represent the effective value than to list all modifiers. In so doing, 
one should be aware of the various sources which contribute to the magnitude of the 
effective parameter in order to properly account for these contributions during an 
analog investigation, or other study, in which wind-tunnel and calculated data are 
used. On the other hand, in the inverse problem of determining coefficients and 
derivatives from flight data, a discrepancy in trends as well as magnitude between 
wind-tunnel and flight data will suggest possible influences from sources not accounted 
for by tunnel data. 

3.5.1   General Equations 

The following assumptions are made with regard to the equations of motion summarized 
in Table IV: 

(i) The airplane behaves as a rigid body, in that the moments of inertia, inclina- 
tion of principal axes, etc., are not affected significantly 
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(ii) The airplane is symmetrical about the xz-plane with regard to geometry and 
mass distribution. 

(iii) The axes of rotating elements on the aircraft are fixed in a direction relative 
tc the body reference axes. 

(iv) The earth is flat. Aircraft speeds are assumed to be insufficient to include 
earth curvature in the equations. 

(v) The forcing frequency of a disturbance is sufficiently far removed from the 
natural frequency of the pertinent part of the structural components to permit 
the disturbance to be considered as a static load and the effect of deformation 
to be accounted for by modification of the aerodynamic parameters. 

(vi) Each aerodynamic parameter is an effective parameter, in that it includes all 
sources contributing to its net value. 

Although listed in Table IV for completeness, experience has shown C 
Cy/j and CCq   and Cc&   to be normally negligible. 

yp - uyr 

3.5.2   Small-Perturbation Equations 

The general equations of motion in Table IV are suitable for analog and digital 
programing which involves large disturbances and nonlinear terms; they are not suitable 
for analytical purposes. For such purposes, it is necessary to linearize the equations 
at least to an engineering degree of accuracy. This is accomplished by restricting 
their applications to small perturbations, as has been discussed previously. In 
addition, the perturbations are referred to a secondary spatial reference frame, 
discussed in Section 2.1.6, which is the unperturbed airplane axis system shown in 
Figure 4(b). Using the secondary reference system for small perturbations permits 
the use of Equations (31a, b, c), which simplifies analysis and extends the validity 
of the linearized perturbation equations to maneuvers involving high pitch attitude 
and large bank angles. 

The uncoupled, linearized perturbation equations are shown in Table V in a format 
which generally constitutes the basis for application to derivative determination. 
The assumptions listed for the general equations of motion are also valid for the 
equations in this table. In addition, it is assumed that the maneuvers are such as 
to minimize the errors in the g terms arising from the approximation of the gravity 
terms shown in Equations (40a, b, c). Also, it is assumed that the gyroscopic couples 
of rotating elements are not significant, which may not always be the case. The 
equations are complete within the limits of the assumptions, and analysis would reveal 
all modes of longitudinal and lateral motions. 

Omission of the longitudinal fjrce equation and the 'air terms in the longitudinal 
equations (50a, b, c) would remove the phugoid mcde from the analysis of the longitudinal 
motions, leaving only the short-period mode. This short-period format of the long- 
itudinal equations is the one us-jally employed. Although the small-perturbation 
equations, shown in Table V are frequently used in the format shown to develop relations 
for derivative determination, it is also desirable to list the equations in an opera- 
tional format as Laplacian transforms with Laplace operator s . 
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Using Laplace transforms enables the dynamic properties of the airplane to be defined 
by a series of transfer functions relating the various responsive motions of the airplane 
to disturbing inputs.    Hie transfer functions are extensively used in stability and 
control, handling qualities, and automatic flight control investigations to assess the 
effects of configuration changes, the effects of particular stability derivatives, and 
the effects of changes in automatic control systems.    They are also helpful in obtaining 
stability derivatives from flight data. 

With zero initial condition? and inputs due only to control deflections,  the Laplace 
transforms of the small-perturbation equations of motion take on the operational forms 
shown in Table VI as Equations (62a,  b,  c) and (63a, b,  c).    The notations   X^ , Ma , 
etc.,  shorn in the equt tions,  are a convenient means of listing the parameters. 

3.6    Determination of the Roots of the Determinant of the 
Lateral-Directional Small-Perturbation Equations 

The following discussion regarding the determination of the roots of the determinant 
of the lateral-directional small-perturbation equations is based on Reference 17. 
Although the main points are brought out at this time, recourse should be made to the 
reference for more detailed considerations. 

3.6.1    The Determinant 

Using the Laplace transform format of the lateral-directional equations (Equations 
(63a, b,  c) in Table VI),  the determinant of these equations may be expressed in either 
of two formats,  as follows: 

(i) When expressed as 

As" + Bs3 + Cs2 + Ds + E   =   0 . (65) 

then 

I'l' - 1 

B   =    (Ln + IX) + <Nr + I'L,) " (I " Iiljtf "p      *x"p r        z r' Vz'^ 

C    =    (NpLr - NrLp) - (Lp + I^Yg - (Nr + l£r)Y> - 

- [(1 - 1^ sin cx)Ng - (sin a - I^L^] 

D    =    (N/p - RpL^) + (N^p - NpLr)Y0 + Bl(fy 
+ l'£ß> " 

-ga{tfi + l$iß) + (N^Cr - $j£ß) sin a 

E    =    gl(LßNp - LpNg) - g2(^Cr - Kfy)    . 

(66) 
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(il) Wnen expressed as 

su + bs3 + csz + ds + e = 0 , (67) 

then 

b = -EJ-M;-?. 

c = - (N^L; - N;L^) + L^3 + npß + sß-üß sm « 

d = - (N^ - N££> - (N;L;- *#)?, - glNä + 

gpß - (Hjfe - N;L^) sin a 

e   =   - gl(L^ - L$ß) + g2(N^I; - Üfiß)   , 

where the primed values are equal to 

m .huh. 1    i - I'I' X 2 

and 
l - I'I' XX 

(68) 

(69) 

The determination of the roots of the determinant is dependent upon the modes of 
motion of the aircraft. The modes may be: 

(a) Lateral phugoid (coupling of spiral and roll modes) and Dutch roll. 

(b) Spiral divergence, roll subsidence, and oscillatory (Dutch roll). 

3.6.2   Determination of the Roots when Lateral 
Phugoid and Dutch Roll Modes Exist 

The determinant (Eqn.(67)) can be approximated by the following biquadratic 

d\   /  e  bd 
s* + (b - - B + [c - -  

c/   V  c  c 
s' + - s + 

c   CJ 
(70) 

in which the first and second quadratics represent the Dutch roll and lateral phugoid 
modes, respectively. 

Two sets of conditions must be satisfied if Equation (70) is to be applicable 17. 

(a) The approximate nature of Equation (70) requires that e/c2 « 1 and bd/c2 « 
to assure validity of the equation. 

(b) It is necessary that d2 - 4ed < 1 in order that the lateral phugoid exist. 

Reference 17 points out, on the basis of limited experience, that, for values of e/c2 

of approximately 0.05 or less, bd/c2 can be as large as 0.25 and d2/4ec as low as 
0.005 without compromising the engineering accuracy of Equation (70). Thus, the 
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e bd 
-r « 1 .   -j < 0.25 , 
cz cz 

0.005 < — < 1 
4ec 

(71) 

The second quadratic in Equation (70) expresses the lateral phugoid very simply; 
thus, 

from s' + - s + - 
c   c 

and »ph 

2£„h<4» Ph 
d 

(72) 

The first quadratic in Equation (70) is unwieldy.    It is simpler to determine the 
characteristics of the Dutch roll mode by the following factored form of determinant 

(a2 + 2£a)ns +a#(s2 + 2£phw„phs + a^ph)    =   0   . 

Expansion of tiiis determinant and comparison with Equation (67) shows that 

(73) 

b   =   2&n + 2Cph^nph 

c   =   wn + ^ph + <2^n> (2^ptf^ph> 

d   =   (2£phwnphK + W&wn)^ph 

e = ^ptPn 

(74) 

Since oj|ph and (2£pj,cünpll) are obtained from Equation (72), w* and (2£&)n) can 
now be determined from Equations (74) or 

2^V 2^>ftaJnph 

wn = c "^ph - (2H>(2^nph) 
(75) 

3.6.3   Determination of the Roots when Spiral Divergence, 
Roll Subsidence,  and Dutch Roll Modes Exist 

When the spiral divergence, roll subsidence, and Dutch roll modes constitute the 
lateral-directional characteristics of the airplane, which io normally the case, the 
determinant as represented by Equation (67) may be factored in the following terms 
characterizing these modes: 

s + SK)( « + 2tog + «fi (76) 



The coefficients   b , c , d   usd   e   (Equation (68)) in terms of the factors of 
Equation (76) are 

1       1 b   =   2fyon + — + — D      T       T 

c   =   <o2 + 2fiw, 
VTB + TS/ + TRTS 

d    -   "2 
) + 2H - 

'n^+ Va 

e   =  <w. n T T 1R1s 

(77) 

When the spiral-mode root,    1AS , is much less than the roll subsidence root, 
1/TR , as it usually is, the coefficients   b ,  c , d ,  and   e   may be approximated 
to a good degree of accuracy by 

b   ~  2£aJ„ + — 
TR 

C    2!  col + 2H ~ 
1 

d   ~ (»1 — 
I.    rp 

(78) 

Eliminating   1,/T«   in Equation (78) 

c   a   (24a>) —+o,2 

d   ~   (2&u ) + -  , 
"       or 

d 
(79) 

Eliminating   2£o>n   in Equations (79) provides an accurate solution of  w2   within the 
limitation that 

1   «± 

or 

(a>2)3 - c(w2)2 + bd(a# - d?   =   0   . (80) 
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Eliminating a>* in Equations (79) to solve for 2£w* within the limitation that 
1A„ « 1/TR results in 

(2^n)
3 - 2b(2C«n)

2 + (c + bz)(2^n) + (d - cb) = 0 . (81) 

The roll-subsidence root, 1/TR , may now be obtained from coefficient b or d 
in Equation (78) or 

1    d 

TR   < 

1 
— = b - 2£w, 
TR 

n 

(82) 

The spiral-divergence root,    1/Tg , may now be approximated from any one of the 
coefficient expressions in Equations (77),  such as 

1 e 
Ts        «ja/ty 

(83) 

4. MASS CHARACTERISTICS 

The airplane mass characteristics - weight, location of the center of gravity, 
moments of inertia, and inclination of principal axis - significantly affect airplane 
motions. Errors in the knowledge of- these quantities are reflected directly in the 
flight-determined derivatives and may govern the validity of the derivatives in com- 
parisons with wind-tunnel data. Although possible inaccuracies in the Knowledge of 
the inertia characteristics must be given serious consideration in comparisons of 
flight-determined derivatives with wind-tunnel data, these derivatives have been used 
effectively in flight-guidance simulator studies. 

The weight and horizontal location of the center of gravity are always determined 
experimentally. Inasmuch as the vertical location of the center of gravity, moments 
of inertia, and location of the principal axis are difficult to determine experimentally, 
manufacturer1 s estimates are usually relied upon. These estimates are considered to 
be cf sufficient accuracy for most work involving flight tests. If more precise data 
are required, they should be determined by using experimental techniques. 

It would be highly desirable to determine all of the mass characteristics 
experimentally. This is not always feasible because of the lack of proper facilities. 
Large, flexible aircraft, such us the Boeing B-52, offer practical problems, in that 
experimentally determined rolling moments of inertia with wings drooped would not be 
representative of flight conditions. The following discussion of the experimental 
determination of mass characteristics of aircraft is intended to serve as a guideline 
in setting up suitable facilities for use with most categories of aircraft. 



30 

ö 

: 

i 

4.1 Weight and Center-of-Gravity Location 

The weight and longitudinal position of the center of gravity relative to the 
horizontal reference line of the airplane for the empty and gross weight conditions 
can be obtained easily by leveling the airplane on suitable scales or electronic 
weighing cells. With weighing cells, two of the cells (Rt and R2) are usually located 
at the wing jackpoints and the third cell (R3) is located at some convenient distance, 
I  , forward or aft of the wing jackpoints. The horizontal position of the center of 
gravity relative to the jackpoints is then determined from 

M   = hi 
IR 

(84) 

For aircraft operating on conventional fuels, the variation of the center of gravity 
with fuel consumption can usually be defined adequately by weighing the airplane at 
several fuel levels, providing there is a predetermined sequence or mode of operation 
in obtaining the fuel from the various fuel cells. When the aircraft is equipped with 
fuel cells from which the fuel can be drawn selectively, the center of gravity position 
becomes a function of the sequence in drawing off the fuel from the various cells as 
well as the weight of the fuel. In some instances, it has been found necessary to 
account for fuel-tank shape and airplane attitude. Where hazardous fuels are used, 
the center of gravity is determined experimentally for the no-fuel condition only; the 
effect of fuel on the center of gravity position is calculated. The horizontal location 
of the center of gravity is experimentally obtained at least to within 0.01 mean aero- 
dynamic chord, which is considered adequate for derivative determination. 

During flight tests, the center of gravity is obtained by observing the total amount 
of fuel consumed and subtracting it from the takeoff weight. Reference to a chart 
showing the variation of weight with center of gravity provides the desired answer. 

An accurate knowledge of the vertical location of the center of gravity is pertinent 
to the experimental derivative studies, insofar as experimental determination of moments 
of inertia and comparison with wind-tunnel data are concerned. The vertical center of 
gravity can be obtained by static or oscillatory techniques. For the static test 
techniques, the airplane is placed in various pitch or roll attitudes. For the roll 
approach (Fig. 12), the airplane is mounted in a horizontal, wings-level attitude on 
knife edges alined with respect to each other in the plane of symmetry of the aircraft. 
By rolling the airplane to various attitude angles and measuring the reaction Rt , 
moment arm yx  , and the roll angle 4> ,  using a clinometer, the vertical position of 
the center of gravity is obtained from the equation 

RiYi -ffczcsln<^ 
Wsin<£ 

(85) 

For rigid aircraft of the order of 15,000 lb, and under carefully controlled conditions, 
the vertical position is considered to be deterainable to within 1 inch. 

To determine the vertical position of the center of gravity from free-oscillati- a 
tests, any one of several techniques may be used. The simplest technique consists of 
changing the equivalent torsional spring constant for pitching or rolling moment of 
inertia tests. For rolling-oscillation tests with the setup shown in Figure 13 and 

P 
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with small damping effects - a necessary condition for successful tests - the equations 
of motion for the two spring conditions are 

(I, + IXc f mz2 + «„a*)«^ + (Ktl - Wz - W^)^ = 0 (86a) 

dx   r Ixc + mz2 + mczc)<J6>2 + (Kt2 - Wx - Wczc)02   =   0 . (86b) 

Considering   4>l = Acosc^t   and   4>2 = Bcoso;2t .  it is found upon solving Equations 
(86a,  b) for   z ,  the vertical distance from the knife edge to the center of gravity, 
that 

Kts-Kt^/p,)2     Wczc 

wLi - (PX/P2)
2]        w 

The equivalent torsional spring constant, Kt , may be changed from Ktx to Kt2 by 
changing the linear springs or the distance a which is perpendicular to the spring 
(see Figure 13). The change in linear springs is probably the more desirable approach. 

Inasmuch as the rolling-oscillation test setup discussed constitutes an inverted 
pendulum, it is imperative that the equivalent torsional spring constant, Kt , be 
greater than Wz + Wcz„ for stability of setup. Also, the accuracy of the results 
depends upon avoiding secondary spring actions of tiebacks and structural flexibility, 
which could inadvertently result in a lower effective spring constant than expected 
because of an equivalent series action of the secondary unwanted spring action with 
the intended spring. 

4.2 Moments of Inertia 

The moments of inertia of an airplane are usually calculated during the design 
phase and are based on estimated weights and centroid locations for various parts of 
the aircraft. These calculated moments of inertia are considered to be adequate for 
most analyses when the re3jlts are to be used in simulator studies. However, should 
experimental determination of the inertia be required, methods are available (see 
References 18 to 21). The methods are generally restricted to rigid aircraft and to 
aircraft whose weight, as well as the safety precautions of the experiment, will permit 
pivoting the aircraft on knife edges and suspending it from overhead cables. 

Schematic representation of typical methods for determining the rolling and pitching 
moments of inertia are illustrated in Figures i3 and 14, respectively. Equation (86) 
is applicable to the determination of rolling moments of inertia in accord with Figure 
13, with consideration given to the proper interpretation of the lengths z and zc 
to the mountings shown. In Figure 14, cradle weight is zero. The yawing moment of 
inertia may be safely determined from a cable-suspension method used to determine the 
inclination of the principal axis (Figures 15 and 16), which is discussed subsequently. 

unless precautions are taken in every detail of an experimental setup, difficulties 
may be encountered because of flexibility of experimental components, which will alter 
the effective spring constant, Kt , or modify the free-oscillation pivotal point 
relative to the center of gravity of the aircraft. In one instance of determining the 
pitching moment of inertia when the aircraft was supported at the wing jackpoints and 
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oscillated with the spring at the nose, the wing section which haJ been considered rigid 
was observed to flex as the aircraft oscillated. This flexing caused the axis of 
rotation to shift forward and downward from the line through the jackpoints. 

A common fault is the use of flexible cables as tlebacks for the springs and con- 
nection from the spring to the aircraft. Under no condition should flexible connections 
be used, inasmuch as they constitute springs in series with the actual intended springs 
employed; thus, the system from tieback to aircraft represents a much softer spring 
than intended. It should also be noted that, on some aircraft, attaching the spring to 
the aft portion of the fuselage would be an error, since the aft portion of the fuselage 
would constitute a relatively flexible structure and alter the effective spring constant. 

Serious errors can also result when knowledge of the center-of-gravity location is 
inaccurate and when the line of action of the spring from the attach point to the air- 
craft is not perpendicular to the plane formed by the axis of rotation and the point of 
spring attachment on the aircraft (Fig.13). 

Generally, the inertia characteristics are determined for no-fuel conditions because 
fuel sloshing tends to bring in a beat action in the oscillatory motions. When deter- 
mination is attempted with fuel onboard, the difference in oscillatory modes between 
the sloshing fuel and the aircraft should be as large as is practical, with due regard 
to safety of the setup, to minimize the beat action and permit determination of the 
natural frequency of oscillation of the aircraft. 

Measuring the inertias of very large aircraft is difficult and is compounded with 
flexible aircraft. Such measurements are not in the realm of the methods discussed. 
A unique facility designed to enhance the feasibility for determining the moments of 
inertia of large aircraft about all three axes is located at the US Air Force Flight 
Test Center, Edwards, California, USA. Its capabilities cover a weight range from 
30,000 to 300,000 b and moments of inertia from 250,000 to 10 x 106 slug ft2. 
The facility enables the determination o* aircraft moments of inertia fron measure- 
ments of changes in pendulum characteristics resulting from the addition of an aircraft 
to a freely oscillating platform. The basic elements of the facility consist of the 
platform, a control console for activating various systems which ready the platform 
for oscillation, and an instrumentation console for regulating the amplitude and 
measuring the period of the oscillations. The platform is an integral cruciform 
structure 110 ft long and 80 ft wide, with its loading surface flush with the surround- 
ing floor space. The apparatus employs special hydrostatic bearings (identical to 
those used in the 200 in. Palomar telescope) to support the platform, which is lockable 
in two axes with oscillation about the axis of interest. 

To contend with the problem of aircraft flexibility, stiffening jacks are used to 
support the aircraft structure. As a result of the stiffening operation, flexibility 
effects are considered to be less than 4% in roll and 2% in pitch. 

The experimental error in the methods discussed is of the order of ±5% or less. 

4.3 Inclination of Principal Axis 

The inclination of the principal axis of the airplane is one of the inore difficult 
quantities to determine experimentally. An error of 1/4° in the value of the inclina- 
tion of the principal axis can significantly affect some of the derivatives. The 
method of Reference 22 is considered accurate to 1/6°. 
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This method consists of finding the direction of the restoring-tnoment vector which 
produces no rolling moment relative to the body x-axis during the yawing oscillations 
of the airplane as a spring mass system while suspended by means of a cable attached 
to a hoisting sling. Figure 15 shows schematically, and Figure 16 shows photogra- 
phically, a general arrangement of the setup. The airplane is suspended at a horizontal 
pitch attitude, and yaw restraint is provided by two sets of springs whose lines of 
action lie in a common plane. The springs should provide a pure couple action. The 
restoring-moment vector acts normal to the plane of the springs. The springs may be 
attached to short, rigid mounting brackets located below the wings equidistant from the 
plane of symmetry or to brackets mounted below the fuselage ahead of and behind the 
center of gravity. In this respect, the wing mounting arrangement is most convenient 
and less tiKie-consuming. It is essential that the springs provide a pure couple action. 

As the airplane oscillates in yaw with various inclinations of the plane of the 
spring couple (angle 8  in Figure 15), some coupling is present between yaw N and 
roll L , which results in a certain amount of rolling oscillation. This is shown in 
the following equations where the subscript r denotes the reference attitude of the 
airplane: 

IxrPr - IxrVr = L <88> 

^rJ-r " Ixrzi-Pr = N • (89) 

At some one value of 8„ , however, the rolling motion accompanying the yawing motion 
Oft) 

is zero (Ipl/lrl =0) . In this situation the preceding equations reduce to 

(90) 
" IXrZrrr =   L 

Izjir =   N . 

However ,  as shown in Figure 15, 

tan8sp   = 
-I 

N 

Hence 

tan8sp   = Ixrzr 
Jzr 

(91) 

(92) 

Inasmuch as the inclination of the principal axis is given by the wellknown expression 

21 
tan2e =  ?rZr . , (93) 

Izr - Ixr 

substitution of Equation (92) for IXZr in Equation (93) gives 

tan 2£ = - aiT*"J2 . (M) 
Izr - Ix-, 
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The value of IZr is determined as a byproduct of the test by using 

CeosS. 
lzr 

_8£ 
or 

(95) 

However, IXr must be determined fron other tests. 

Figure 17 shows a typical experimental plot of the variation of |p|/|rj with S 
for determining the value of Sgp at which |p|/|r| is zero. In obtaining the tests 
points shown in the figure, the flight test roll- and yaw-rate gyros mounted in the 
airplane were used to obtain oscillograph records for determining |p|/|r| from the 
transient oscillations. 

The measured values of moments of inertia relative to the reference axes and the 
determined inclination of the principal axes may be used to determine the principal 
moments of inertias, I,0 and IZo , by using the following equations 

l20 

Ixr - Ixrzr 
tan e 

Izr 
+ JtxrZr tan e 

(98) 

(97) 

Although no mention was made of the effects of air mass on the experimental values 
of moments of inertia, the effects should be considered and corrections applied if 
necessary. Reference 23 provides formulas to correct for air-mass effects. 

Formulas for transferring moments of inertia from one set of axes to another were 
presented in Section 3.1. 

5. INSTRUMENTATION 

Basic to an analysis of flight data is the instrumentation. Considerable instrumen- 
tation research has been in progress and many flight test Instruments have been deve- 
loped to improve the linearity of response, resolution, dynamic response characteristics, 
readability, ruggedness, and reliability of calibrations over varying operating con- 
ditions and extended periods of time. In addition, the application of the instruments 
requires knowledge of mounting accuracy, sources of error in the flight records, and 
methods of correcting the errors. Inadequate appreciation of the instrument character- 
istics, mounting accuracy, and possible influence of sources of error serves as a 
detriment to the successful application of new techniques of analysis as well as a 
detriment to the analysis by approximate methods. 

In the following discussion, sufficient guidelines are presented to show the care 
required in the selection, installation, and calibration of instruments to minimize 
errors in the analysis of flight data. Individual instruments may differ from one 
organization to another and the degree of sophistication in instruments and recorders 
will vary with the individual Investigation; however, the principals of operation of 
the sensors are generally the same. 

! 
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5.1 ISach Ninber, Altitude, and Dynamic Pressure 

Accurate determination of Mach number is of fundamental importance in flight testing 
high-speed aircraft. Hie principal methods, discussed in detail in References 24 and 
25, are based upon the following relationship f:>r subsonic conditions (M < 1.0) 

% . ß.ti-N""-0., t^i (1 + 0.2M)7/2 - 1 .        (98) ' i 

For supersonic conditions (M > 1.0), the equation is modified to include the loss in 
total pressure behind the shock wave 

/     7+i    2      \
/(y-l) 

% 7+1    ,1 2 \ , /    5.76II2    \5/2 

-   =     M2  -1    =    1.2M2    ;  -1. (99) 
27      2     7-1 \56M   " °-8/ 

\7 + 1 7+1 

The impact pressure   QC   and the static pressure   p   are measured by using a pitot- 
static head and pressure recorders.    The maximum Mach number as well as dynamic 
pressure which can be determined by using pitot-static heads is of the order of 3.5. 
Higher   peeds are primarily dependent upon inertial platforms and radar.    Dynamic 
pressures at Mach numbers is the approximate range of 2.5 to 8.0 can be determined 
through the use of a spherical flow-direction sensor and a total- (stagnation) pressure 
technique. 

5.1.1   Pitot-Static Head (M < 3.5) 

Much research has been done on various types and configurations of total-pressure 
heads to reduce angularity effects26'27.    The type shown in Figure 18 is used widely. 
This head has an external cylindrical shape,  a cylindrical chamber,  and a 10° slant 
profile.    It is insensitive (zero error) to angle-of-attack from -5° to 20° and up to 
10° of sideslip.    The error is less than 1% in the angle-of-attack range from -10° to 
25° and ±10° sideslip. 

The arrangement of the static-pressure orifices on the head has been found to be 
pertinent in increasing the range of insensitivity of the orifices to flow angularities. 
The arrangement used has been determined from tests of orifice configurations2"'29. 
The two identical sets or arrangements shown in Figure 18 are each circumferential, 
with four orifices on the top,  six on the bottom,  and one on the bottom centerline 
behind the others.    The two sets of static-pressure orifices are used to provide for 
separate pressure systems.    One set of static orifices is used for the pilot' s 
instruments,  the other set for flight test recording instruments to minimize the time 
lag of response that would be encountered with a common system.    The arrangement of 
the orifices in each set provides an increased range of insensitivity to angle-of- 
attack; however,  It is not as insensitive to sideslip.    Large static-pressure errors 
are encountered at sideslip angles greater than 3°,    Since constant sideslip angles 
are seldom encountered, the static-pressure data can be readily faired. 
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Installation of the pitot-static head: Installation of the pitot-static bead requires 
consideration of the complicated flow field of the airplane, which is a function of the 
airplane configuration as well as Mach number and attitude.    Errors in pitot-static- 
head readings resulting from this flow field are referred to as petition errors.    The 
static-pressure orifices are particularly affected by position errors at subsonic 
speeds; thus, precautions are taken to mount the pitot-static head as far ahead of the 
airplane as is practical. 

Of the various types of installations of the pitot-static head - such as nose boom, 
wing boom, and fuselage - the nose-boom installation is the most suitable for minimizing 
position errors.    In this installation, shown in Figure 19,  the head is mounted on a 
boom extending as far ahead of the nose of the airplane as is practical.    As reported 
in Reference 29, the amount of error in Mach number due to position error in the static- 
pressure measurements can be related to certain physical measurements on the airplane. 
This is shown in Figures 20 and 21,  which are reproduced from Reference 30.    In Figure 
20, the error in Mach number due to static-pressure error is plotted as a ratio of 
boom length to the maximum effective fuselage diameter for subsonic, transonic, and 
supersonic speeds.    In Figure 21,  the variation in Mach number error with Mach number 
is plotted for two airplanes having boom-length-to-fuselage-diameter ratios of 0.60 
and 0.95.    Above a Mach number of 1.05,  the position error drops to zero.    The Mach 
number at which the position error drops to zero is dependent upon the nope-boom 
geometry and is the Mach cumber at which the shock wave ahead of the airplane crosses 
over the static-pressure orifices. 

Wing-boom installations of the pitot-static head are subject to several disadvantages, 
including possible susceptibility to the shock wave caused by the wing as well as the 
shock wave caused by the fuselage.    This complicates the calibration and makes it more 
difficult for the pilot to fly at the desired Mach number in the regions where the 
shoe* waves are in the vicinity of the orifices.    Wing booms are usually more sensitive 
to sideslip and subject to aore lag in response because of the longer tubing required. 

Fuselage installations of the head are subject to position errurs, which are diffi- 
cult to estimate. 

Calibration: Calibration of the pitot-static head,  fortunately,  involves only the 
determination of the position error for the static pressure - the total pressure is 
not affected by position error.    Various methods that have been used include the pacer 
method,  the fly-by (tower-pass) method,  and modifications of the basic radar-photo- 
theodolite method24.    The pacer method requires the use of a pacer airplane with a 
calibrated system and special flights for calibration purposes.    The fly-by method 
requires lg flight at extremely low altitudes past an instrumented course.    This 
latter method not only requires special flights,  but is hazardous and limited to 
Mach numbers of about 0.8. 

The radar-phototheodolite method has the advantage of providing calibration data 
during routine research flights.    The method makes use of a radiosonde unit to measure 
static-pressure and temperature variations of the atmosphere with altitude.    It also 
requires ground equipment consisting of a radar unit, a phototheodolite,  a chronograph, 
and three cameras.    One of the cameras photographs the radar scope and gives the slant 
range; the target carcera gives the correction to the elevation scales; and the third 
camera gives the elevation scale.    The airplane itself is equipped with a radar beacon 
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to assist in tracking. The three cameras and the airplane's internal records are 
synchronized by means of the chronograph. The radar-phototheodolite unit determines 
the range and elevation angle of the airplane from which the true geometric altitude 
of the airplane is determined .within ±100 ft) as a function of time. 

A cross plot of the radar-phototheodolite data (airplane altitude vs. time) with the 
radiosonde results (free-stream static pressure vs. altitude) provides a plot of true 
free-stream static pressure as a function of time. Since the time base of the air- 
plane* s indicated static-pressure records is synchronized with the radar-phototheodolite, 
a comparison of the airplane' s indicated static-pressure records with the cross plot 
provides the position error, Ap , of the static head. The corrected static pressure 
may now be obtained from the relation p = p"j + Ap . The true Impact pressure is now 
determined from qc = pT - p = qcl - Ap . 

True Mach number:  True Mach number is determined from tables of qc/p as functions 
of Mach number based on Equations (98) and (99). The indicated Mach number, Mi , as 
determined from p1 , qcl , and the tables, is plotted against the corrected Mach number, 
M , tc provide a calibration curve, such as shown in Figure 22, for the pitot-static- 
head installation on the airplane. Generally, calibration data points for four or 
five flights are used before the calibration curve is finalized. The scatter. AM , 
in calibration points is usually within 10.01 at subsonic and supersonic speeds and 
within ±0.02 at transonic speeds. 

Pressare altitude: Altitude is generally expressed in terms of "pressure altitude", 
which is the altitude in the standard atmosphere tables corresponding to the corrected 
static pressure. The corrections for a given pitot-static pressure system are obtained 
in the form p^/p vs. M . The curve for this relationship is derived from the Mach 
number calibration of the system and the position error for the static pressure deter- 
mined as a ratio of the true static pressure by the following equations from Reference 
25: 

When M < 1.0 , 

When M > 1.0 , 

Ap    -1.4M2 /AM\ 
  =  r — . (100) 
p    1 + 0.2M2 \M / 

Ap   (      4.0     \/A*i\ 
-2 —- • (101) 

w 
- . ■' 1 

... 

I: 

p    \5.6M2 - 0.8   /\ M 

In routine tests, thr? pressure ratio Pj/p is divided by pi   to obtain p , which 
is used to determine the pressure altitude. 

Dynamic pressure:  The dynamic pressure, q , is determined from the simple relation 

q = 0.7pM2 . (102) 
, 
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5.1.2   Use of Spherical Flow-Direction Sensor to 
Obtain Dynamic Pressure 

In the absence of true Mach number, such as when flight Is beyond the practical 
Unit of the pitot-static tube (If ~ 3.5), a technique has been evolved to obtain the 
dynamic pressure, in the higher supersonic and hypersonic regions, directly from the 
total -pressure port "f a spherics.' flnw-direction sensor31.    Hie flow-direction sensor, 
described in more detail in Section 5.3,  is a movable sphere mounted at the nose of 
the airplane to form a "ball nose".    The total-pressure port vectors Into the resultant 
velocity at the sensor. 

Inasmuch as   q = 0.7 pM2   and,  from the Rayleigh pitot formula, 

—   =   f(M) , 

where 

f(M)   = 
(7 + 1)M' 

7/(7+1) 2>MZ - (7 - 1) 
7+ 1 

1/(7+1) 
(103) 

the dynamic pressure can be expressed as 

5   =   0.7p[f(M)]pT 

or 
q 

P(M) 

(104) 

(105) 

A plot of q/pT versus M (Fig. 23(a)) shows that this ratio varies only about 5% in the 
Mach range above 2.5. As c result of this small variation in q/p. 
numbers, it was suggested that an 
as 

'indicated" dynamic pressure, q 
at the higher Mach 

, could be expressed 

»i KpT (106) 

Figure 23(b) shows the ratio of indicated to true dynamic pressure,    qi/q ,  for two 
values of   K .    Using   K = 0.526 , q   is 5% high at   M = 2.1   and 2.5% low at   M = 7 

5.1.3   Pressure-Recording Instruments 

Selection of the pressure-recording instruments an i their ranges for a given instal- 
lation depends on the altitude and Mach number range i-.er which a specified attainable 
Mach number accuracy is desired.    When tests are to be conducted at one altitude,  it 
is no problem to select a pressure-recording instrument to provide the requisite 
accuracy.    For tests conducted over a large range of altitudes, the requisite accuracy 
may be attained by using a combination of limited-range instruments.    Considerations of 
the pressure time lag require that the instrument volume remain as small as possible, 
thus necessitating an evaluation of Instrument accuracy with consideration for the 
errors caused by the added time lag of multiple-instrument installation. 
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The lag in response at the recorder servo or pilot display, as the case may be, can 
be calculated from the following formula (from Reference 32), which takes into account 
the sense line, instrument volume, and pressure 

(107) 

where 

K   =   128M0I(V0O 
7rpD'!   " ' 

X = lag in response,  sec 

M0 = viscosity of the fluid,  lb sec/in"2 

I = length of sense line,  in 

Vol = instrument volume,  in"3 

P = mean pressure in sense line,  lb/in2 

D = diameter of sense lice,  in   . 

Several ranges of instruments are available for both the static-pressure and total- 
pressure recorders.    For the static-pressure recorders,  the lower-range instruments 
require temperature calibration.    Hysteresis and friction errors, and temperature 
errors,  should be within ±1/2% of range or better. 

5.2 Control Position Transmitters 

Control position transmitters, commonly referred to as CPT units, sense the control- 
surface deflections and must be accurate and sensitive enough to measure small 
deflections. Transmitters of the sliding contactor type change the ratio of resistance 
in two arms of a Wheatstone bridge circuit. Any variation in the resistance of the 
arms unbalances the circuit and causes current to flow to the recording galvanometer 
(see Figure 24). 

In a properly installed system, the phase lag between the transmitter and the re- 
corder should be negligible. The errors due to hysteresis, zero shift, temperature, 
accelerations, or vibrations should also be negligible. 

The transmitters are firmly mounted at the control surfaces to eliminate the effect 
of control-system deformations. The spanwise location of the transmitter gives an 
approximate spanwise surface deflection. 

Zero checks are made before and after each flight to detect any zero shift in the 
galvanometer recording system. 

f  * i 
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5.3 Angle-of Attack and Sideslip 

5.3.1    Vane-Type Flow-Direction Sensors 

Of the various types of flow-direction devices for sensing angle of attack and 
sideslip up to a Mach number of approximately 3.0,  good accuracy and reliability is 
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obtained with a counterbalanced, freely turning vane mounted on a nose boom, which 
also serves as a mount for the pltot-static head (Fig.19).    Each vane is directly 
connected to a synchro transmitter within the boom, which Is electrically connected 
to a synchro receiver mounted in a recorder located within the airplane.    It should 
be noted that, although the a-vane measures the aerodynamic   a , the ß-vme measures 
a   ß   referenced to the body axis system of the airplane. 

Inherent accuracy: Hysteresis in the system is practically nil.    Friction introduces 
an error of less than ±0.1°.    In an optical recorder system, the unbalance of a balanced 
optical recorder element may cause a trace deflection equivalent to 0.05° per g of 
acceleration.    Temperature has no direct effect on sensitivity.    Natural frequency and 
damping of the system should be of the order to 10 c/s and 0.65,  respectively,  to pro- 
vide flat response to within ±1% for sinusoidal inputs up to 6 c/s. 

Mounting: The angle-of-attack and angle-of-sideslip vanes are mounted on a nose boom 
extending forward as far as possible to minimise the effects of upwash and shock wave. 
In this respect, vanes arc mounted 1ft maximum fuselage diameters ahead of the airplane 
when feasible.    Figure 25,  reproduced from Reference 30, shows the theoretical effects 
of upwash from the nose boom and fuselage at low speeds.    Wing upwash was not considered. 

The boom and its mount should be sufficiently stiff to minimize deflections due to 
inertia and air loads.    Particular care must be taken to aline the longitudinal axis 
of the boom with the longitudinal body axis of the airplane and the vane struts to the 
boom so that the angle-of-attack and angle-of-sideslip vane struts are parallel to the 
body   y   and   z   axes,  respectively.    The rear vane is for sideslip and projects verti- 
cally downward.    The recorder is mounted in any convenient location. 

Field checks: The final calibration of a transmitter-recorder combination is made in 
place on the airplane with the aid of a calibration fixture that provides an accurate 
alinement of the vane with the boom and the zero of the calibration quadrant. Calibrations 
should be made in increments of about 2° to detect nonlinearities.    Calibration should 
be performed both before and after flight. 

The vanes should be given periodic checks for alinement with their pivotal shafts 
and for friction.    An extension of the chordline of the vane should be within 0.005 in. 
of alinement with the center of the shaft. 

Correction of recorded data: The angle-of-attack and angle-of-sideslip vanes measure 
local flow direction.    The effects of boom bending due to inertia and air loads,  flow 
components resulting from angular velocities,   flight-path curvature,  and upwash due to 
the boom,   fuselage,  and wings introduce errors in the measured flow angles with respect 
to the true airplane angle-of-attack or sideslip.    In addition, phase lag and dynamic 
amplification of the sensing-recording system introduce additional errors in the re- 
cording of the vane indications.    The magnitude of each effect must be investigated 
and corrections made to the recorded data wherever pertinent to the analysis for deter- 
mination of derivatives. 

Bending of the boom results in errors in vane indications,   inasmuch as the vane is 
referenced to the axis of the boon.    As pointed out In Reference 30,  deflections due to 
aerodynamic loading have been negligible; however,  «here very long booms are used or 
extremely long,   flexible fuselages are being dealt with,  bending corrections may be 
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determined fron calculated aerodynamic loadiag31.    Boon-bending error resulting 1 
inertia loads is accounted for through static deflection calibration of the boon. 

OP! 

Upwash error resulting from the boom,  fuselage, and wing is generally considered 
negligible and within the accuracy of the methods of analysis employed.    This may not 
necessarily be true.    In a boom-vane installation on a large bomber where the vane was 
one fuselage diameter ahead of the nose, the upwash error in angle-of-attack at sub- 
sonic speeds was cf the order of 4%.    On other large aircraft having fuselages of 
larger cross section,  the influence was much larger.    Upwash error due to the boom 
itself may be measured by wind-tunnel calibration of the system28'3*.    The effect of 
upwash at subsonic speeds at the vane due to the fuselage can be calculated by the 
method of Reference 35.    The effect of upwash at subsonic speeds due to the wing can 
be calculated by the equations in Reference 36 for unswept wings and the methods of 
Reference 37 for swept wings.    At supersonic speeds, the wing and fuselage do not 
contribute any upwash effects to the vane. 

The angle-of-attack sensor is also subject to pitch-rate effects of flight-path 
curvature.    Corrections for flight-path curvature (Pig. 26) may be significant at sub- 
sonic speeds; whereas, pitch-rate corrections may be significant from the subsonic 
through the low supersonic speea range     Corrections for flight-path curvature affect 
magnitude primarily; whereas,  corrections for pitch rate affect phase angle primarily. 
This is illustrated in Figure 27, which shows the graphical time-vector determination 
of the absolute amplitude of the corrected angle of attack as a rntio of the indicated 
amplitude for an aircraft performing small-perturbation,  free-osciilation maneuvers at 
a Mach number of 0.8 at 40,000 ft.    The presentation considers only corrections for 
flight-path curvature and pitch-rate affects and is based on the equation 

a  ~   ai + ~7T (an ~ oos ^C0B ^) + — Q • (108) 

The solution shows the influence of the flight-path curvature to be of the order of 3%. 

Flight-path curvature in yaw has a negligible effect on the sideslip vane.    Correction 
for yaw-rate and roll-rate effects should be considered.    The approximate expression for 
correcting the indicated sideslip for angular-rate effects is 

•Mi 

. 

ß  ±^-hr + 
Z-lP   . (109) 

5.3. 2   Spherical Hypersonic Flois-Direction Sensor 

The spherical flow-direction sensor shown in Figure 28 was designed to replace the 
a   and   ß   vane-type sensors at the higher supersonic Mach numbers and dynamic pressure 
where the combined temperature and aerodynamic loads exceed the limitations of the vane- 
type sensor38.    The spherical sensor is a null-seeking, hydraulically operated, electro- 
nically controlled servo-mechanism.    It has pressure measurements as its sole sensing 
inputs.    It operates on the principle that when two static ports are located on the 
great circle of a sphere, a null reading will result when the bisector of the Included 
angle of the "TO static ports is parallel to the fluid stream immediately in front of 
the sensor.    The rotation of the bisecting line relative to a reference gives the 
inclination of the fluid stream relative to the reference. 
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then the spherical sensor is in the zero position (axis alined wi^h the airplane), 
the a-ports are 42° above and below the reference line in the vertical plane of symmetry 
of the aircraft and the /i-ports are 42° on either side of the reference line in the 
transverse plane. 

The sphere constitutes the outer gimbal of a two-gimbal pivot system in which the 
outer gimbal is pivoted to the inner gimbal whose pivotal axis is fixed and is normal 
to the plane of symmetry of the airplane. As the sensing sphere seeks null readings 
in each of its two sets of static-pressure ports, the gimbals rotate about their res- 
pective axes. The inner gimbal, rotating about its fixed axis, which is normal to the 
plane of symmetry, sweeps an angle a in the plane of symmetry. The outer gimbal, 
whose pivotal axis is mounted on the inner gimbal and remains in the plane of symmetry 
at all times, sweeps an a\gle ß   in a plane which is perpendicular to the plane of 
symmetry; this plane is tL*> transverse plane of the stability axis system of the 
aircraft. The a and ß   angles nicked off by synchros are the aerodynamic a and 
ß  angles of the airplane. 

The inherent accuracy of the spherical sensor is of the order of ±0.5° or better 
for dynamic pressures in excess of 20 lb/ft2. At high angles of attack in excess of 
approximately 26° at low dynamic pressures of about 40 lb/ft2 and less, the a indica- 
tions are subject to large errors, possibly due to flow interference of the lip on the 
collar of the housing. 

5.4 Angular Velocities and Accelerations 

The angular velocity and angular acceleration relative to any one axis can be sensed 
by individual sensors or sensed and recorded in a convenient packaged unit. Figures 
39(a) and 39(b) show the details of the angular-velocity aspect of a NACA designed, 
packaged unit which includes the recorder. The angular acceleration sensing and re- 
cording involves a relatively small extension of this unit. The operation of the unit 
depends upon the precessional force of a restrained gyro motor when the unit is sub- 
jected to an angular rate about an axis which is perpendicular to both the axis of 
rotation of the gyro motor and the axis of rotation of the gimbal rings. The gyro- 
scopic element is the rotor of a synchronous motor. The sensitive element is res- 
trained by a precision helical spring. The moving system is damped by rotating an 
aluminium disk in the field of a strong permanent magnet. The angular-velocity measure- 
ment is made by optically recording on the film the angular displacement of the gimbal. 
Sensitivity of the angular-velocity recorder can be adjusted by rotating the actuator 
arm along the mirror staff tail. 

Angular acceleration is obtained by differentiating the gimbal motion. The differ- 
entiation is accomplished by mounting a coil in a magnetic field ard driving it from 
the damping shaft so that it rotates with speed proportional to the angular velocity 
of the gimbal. The output voltage, which is proportional to the angular acceleration, 
is recorded on the film by a self-contained reflecting galvanometer. 

5.4.i Inherent Accuracy 

In well-designed angular-velocity systems, the reading accuracy is of the order of 
0.5% of full scale or better; the errors due to friction and hysteresis are less than 
1% of full scale, and the change in sensitivity from large changes in temperature should 
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be as small as possible. Errors due to linear accelerations of 5g should be less 
than 1%. The sensor should provide flat response characteristics within ±1% for all 
anticipated impressed frequencies. The phase lag (tine lag) is a function of damping 
ratio and undamped natural frequency of the sensor. 

Recorded angular accelerations are subject to the errors found in the angular- 
velocity record. In the NACA acceleration-velocity packaged unit, additional errors 
are introduced by the acceleration recording galvanometer; inasmuch as the angular- 
acceleration pickup is a differentiation device, the response and phase lag of the 
aicelerometer and velocity portions of the unit are similar. 

5.4.2 Mounting and Corrections 

It is iuportant that the instrument mounting be rigid. Although small-amplitude, 
high-frequency vibrations may not be apparent on the velocity trace, the vibrations 
can introduce considerable noise in the acceleration trace. 

Angular-velocity gyros are subject to coupling errors caused by an interference 
(airplane) angular velocity about the spin axis of thr gyro rotor. Care should be 
exercised in orienting the instrument during mounting so as to subject its spin axis 
to the minimum interference angular velocity. A mathematical study of the coupling 
error is presented in Reference 39. The interference angular velocity (also known 
as the q rate) affects the sensitivity of the instrument, the undamped natural fre- 
quency, and the damping ratio. The extent of the errors is a function of the gimbal 
tilt, which, itself, is a function of the gyro sensitivity in spring-restrained in- 
struments and the magnitude of '.lie interference angular velocity. This is illustrated 
in Figure 40 for an angular- ve ocity unit having a static sensitivity of 0.256 radian 
per radian per second. A > jcr^ase in sensitivity would reduce the coupling error; 
however, a decrease is not always desirable. To minimize the coupling error for any 
one instrument, the axes should be oriented as follows: 

Desired 
Velocity 

Input 
Axis 

Spin 
Axis 

Output 
Axis 

Roll rate, p X z y 

Pitch rate, q y z X 

Yaw rate, r z y X 

i 
f 

-n 

4 
i 
'   i   1 

Alinement of the sensLig-recording units should be within ±0.2° of correct orientation 
with relation to the body axes, undetected misalinement has been known to result in 
erroneous values of highly pertinent derivatives, which resulted in misleading results 
in analog-simulated rolling characteristics. In any correction for misalinement, it 
is pertinent that the recorded values be corrected for phase lag of the instrument prior 
to insertion in the correction equations. Simultaneously, the response of the instru- 
ment should be checked, if there is any appreciable deviation from the damping ratio 
of 0.65, to ascertain the percentage error in magnitude of the indicated quantity due 
to the dynamics of the instrument. Misalinements in the mounting of the unit may be 
accounted for by using the equations shown in Figure 31. 

! 
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5.5 Linear Accelerations 

In general,  flight testing is done with the bean-type linear acceleroneters which 
are available as single-component or three-component units.    Drag determination is 
frequently made with single-component units30.    The beam-motion restraining force is 
generally supplied by a pair of opposed helical springs.    The sensitivity and undamped 
natural frequency are dependent upon the springs used. 

5.5.1 Inherent Accuracy 

In properly designed beam-type linear accelerometers, sensitivity and zero changes 
from random causes are less than 0.5% of full scale. The sensor should have a damping 
ratio of 0.65 and a sufficiently high undamped natural frequency to provide flat res- 
ponse characteristics within ±1% for Impressed frequencies up to 60% of the undamped 
natural frequency of the sensor. Each linear accelerometer is affected by an inter- 
acting acceleration acting along the beam. The effect is generally small but should 
net be arbitrarily ignored. 

5.5.2 Mounting and Corrections 

The instrument should be mounted as close to the center of gravity of the airplane 
as possible.    It should be rigidly fastened on a rigid mounting attached to the primary 
structure of the airplane to avoid or at least minimize extraneous vibratory accelera- 
tions.    It should be alined to within ±0.2° of correct orientation with relation to 
all three reference axes.    When the instrument is not mounted at the cenLer of gravity 
of the airplane,  corrections of the indicated readings to the center of gravity must 
be made fey using the expressions shown in Figure 32.    The equations for normal accelera- 
tion,    aQ ,  -nd transverse acceleration,    at ,  can be linearized and corrections thus 
simplified by mounting the accelerometers in the plane of symmetry along the x-axis. 

5.6 Phase Lag and Response 

Since several individually recorded quantities are utilized in the determination of 
various derivatives, it is important that the phase-lag (time-lag) characteristics of 
each recording instrument be taken into consideration.    For systems where all the 
quantities can be recorded on electrical galvanometers,  it is generally possible to 
equalize the individual phase lags by proper choice of the frequency response of the 
recording system.    Where this is not possible, as in the use of certain cf the self- 
recording NASA instruments, phase-lag corrections must be considered and applied to 
bring all pertinent quantities into correct time relationship. 

Phase-lag corrections must be applied before making any corrections for mlsalinement. 
Corrections for mlsalinement must be made before correcting the vane and linear-accelero- 
meter records to the center of gravity of the airplane. 

Because of the nature of the control inputs, phase-lag corrections can be applied 
simply by shifting the data time scale"0, as in the determination of control derivatives, 
or by correcting phase-angle relationships, as in the time-vector method of analysis. 
This is accomplished by determining the undamped natural frequency of the airplane 
from free-oscillation maneuvers and Figure 33.    Amplitude corrections are not required, 
since the Instruments have flat response characteristics. 
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When the instruments are not sufficiently damped to provide flat response character- 
istics, corrections to the magnitudes of the recorded quantities may be determined 
from Figure 34. 

5.7 Ranges and Sensitivity 

Instruments used for studies of general handling qualities have relatively low 
sensitivities in order to accommodate the normal flight range and are used for approxi- 
mate evaluation of derivatives in conjunction with these studies. For accurate evalua- 
tion of the derivatives, using small disturbance maneuvers, sensitive gyros anu accelero- 
meters are installed to supplement or replace those used for the handling-qualities 
studies. The ranges and sensitivities of the instruments are usually selected after 
studying flight test records of small-perturbation maneuvers performed over a Mach 
number range during pilot familiarization flights when the airplane is equipped with 
general-purpose flight test instruments. The increase in sensitivity of any one in- 
strument must be accomplished with discretion, inasmuch as an optimum sensitivity is 
attained beyond which any increase may result simply in a false sense of accuracy. 

Table VII shows the characteristics of instruments which are desirable for derivative 
investigations fur one high-performance airplane when the pulsed free-oscillation 
maneuver is employed. The listed instrument natural frequencies are more than adequate 
to maintain flat response characteristics during forced portions of the maneuver up to 
the anticipated maximum frequencies for all recorded quantities. 

5.8 Pulse Code Modulation (PCM) Data-Acquisition Systems 

In the preceding considerations of instrumentation, emphasis was placed on factors 
that affect the accuracy of individual sensors. Self-contained sensor-recorded units 
are compact, reliable, and accurate. The use of sensors wired to remote recorders 
can introduce degradation in the accuracy of the overall sensor-recorder system; how- 
ever, such systems are used to keep the instrumentation volume to a minimum where 
space is a prime factor and a large number of parameters are involved. As the number 
of sensed and recorded parameters increases, the time lag in the recovery of the data 
for the user increases. In flight test investigations where the bulk of the instru- 
mentation is a serious problem or where the number of parameters recorded may constitute 
a serious time lag in the recovery of the data for the user, a sophisticated data- 
acquisition system is available to alleviate these problems. This system, originated 
to fulfill the needs of the space industry, in which transducers of superior quality 
are used, is capable of handling the data to reasonable accuracy (0.2% to 1%). The 
system, referred to as the PCM system, converts the analog signal from the sensor to 
digital format and records the digitized data on tape on a time-sharing basis. 

♦ 

Figure 35(a) shows a schematic drawing of an airborne PCM system. The analog signals 
from the sensors go to a PCM encoder to convert the signal to an identification coded, 
digitized format. The coded, digitized signals are then reccrded in parallel on an 
onboard tape recorder on a time-sharing basis. To recover the data, the taped signals 
are processed through a PCM decommutation, which identifies (unscrambles) the individual 
ser.sor signals, to a format computer to provide real-time data outputs in the form of 
strip charts or oscillograph readouts for an immediate look at the data. The real-time 
data are also transmitted to a general-purpose computer which tabulates, plots, or 
performs complex manipulation of the data in engineering units. 
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Where weight is a serious factor, Figure 35(b) shows a schematic drawing of the 
POM system using telemetry. The main differences between the telemetered and airborne 
PCM systems involves the transmission of the coded, digitized signals in series to the 
decommutator (instead of parallel to the recorder), which provides time synchronization 
of the signals before the signals are taped. In processing the data, the format com- 
puter properly identifies the individual data channels for real-time data out;nit. 

As stated earlier, the PCM system is a sophisticated operation. One installation at 
the NASA Flight Research Center, Edw ds, California, is designed to handle 15,400 data 
samples per second from 77 to a maximum of 800 data sources 

6. FLIGHT TEST TECHNIQUES 

Determination of the flight test techniques to be used in obtaining stability and 
control derivatives from flight data is governed by a number of factors, including the 
methods of analysis to be employed. Successful mathematical methods of analysis have 
been limited to the linearized form of the equations of motion and thus restrict the 
maneuvers to small perturbations. Inasmuch as stability derivatives are functions of 
angle of attack and Mach number and, to some extent, aeroelasticity of the airframe, 
the controlled variables are Mach number, load factor, and pressure altitude. For 
safety of flight, the investigation of the stability and control characteristics is 
usually initiated with a gradual buildup of maneuvers at high altitude where the 
natural frequency and damping of the airplane are lower than at low altitudes and 
thus permit better control. It is desirable, when feasible, to have the maneuvers 
performed with the airplane weight within such limits over the derivative-determination 
phase of the flight test program that the effects of changes in centei-of-gravity 
position and moments of inertia will be negligible. 

The important factors to be considered in flight testing for stability and control 
derivatives are discussed in the following sections. 

8.1 Mach Number and Altitude 

Flight test maneuvers are generally performed at lg initial conditions at constant 
Mach number and altitude. Normally, some variations in these quantities are accepted 
if the resultant change in dynamic pressure is not more than 5% over that portion of 
the maneuver encompassed in the analysis. In regions where large Mach number effects 
exist (Fig.36), tests should be conducted at close Mach number intervals with more 
rigid requirements at constant Mach number and altitude. Failure to trim the aircraft 
to the desired Mach number and to mi:1 a  that Mach number during the maneuver in 
regions of rapidly varying characteristics may produce a scatter of data and an 
erroneous analysis. 

The very nature of flight testing requires, for expediency, plotting the results 
of analysis as a function of Mach number, with each curve representing a constant- 
altitude condition. Figure 37, taken from Reference 41, shows the influence of 
altitude on flight test data on one supersonic aircraft. 

'■ •■'» - 
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6.2 Angle of Attack and Load Factor 
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The variation in airplane characteristics with angle of attack is determined by 
performing maneuvers at different altitudes with lg trim conditions prevailing prior 
to the perturbation, or at constant altitude with the maneuver performed during a 
stabilized constant-g pushover or turn. It should be noted that it is difficult to 
obtair good maneuvers during stabilized turns; exceptional piloting skill is required. 
Figures 37 and 38 show the influence of load factor on stability characteristics. In 
instances where the aeroelasticity of the structure is nil (dynamic pressure effects 
are nil), a combination of the two techniques will result in the determination of the 
variation of the derivatives over an extended range of angle of attack. Should aero- 
elasticity of the structure be a factor to contend with, the results from the two 
techniques will differ for the sune angle of attack. Mach number, and center of gravity. 

6.3 Aeroelasticity 

*. 

Aeroelastic deformation of the structure assumes increasing significance as the 
aircraft increases in size and slenderness and operates at increasing dynamic pressures. 
Supersonic transport designs are flexible in order to keep the structural weight down, 
the payload high, and the range capability a maximum.    To apply theoretical flexibility 
corrections to rigid wind-tunnel data for comparisons with flight data provides an 
intuitive basis in ascertaining flexibility effects.    When such comparisons are em- 
ployed and a definite disagreement is evident in the comparison in regard to level and 
trends of the stability and control parameters as a function of Mach number,  it may J! 
become difficult to locate the source of the discrepancy - wind-tunnel data or predicted 
flexibility corrections.    Thus, a more positive approach is required to assess flexibi- 
lity effects. 

The stability and control derivatives should be essentially invariant for a rigid 
airplane as long as Mach number,  angle-of-attack,  and the center of gravity are constant 
(assuming Reynolds number effects to be a minor factor).    Thus,  any direct approach to 
investigating flexibility effects based on flight data should show the variation of 
the stability parameters - obtained at the same Mach number,  angle-of-attack, and center 
of gravity - as a function of dynamic pressure.    Although Mach number and center-of- 
gravity control is straightfrrward,  the angle-of-attack is a problem. 

The location of the angle-of-attack sensor exposes the sensor to errors resulting 
from structural deformations,   in addition to the other sources discussed in Section 5.3. 
Hence,  it is more judicious to use the life coefficient   CL    in lieu of angle-of-attack 
a .      Thus,  from a practical point of view,  a direct investigation of aeroelastic 
effects should be based on a comparison of flight data for different dynamic-pressure 
conditions obtained at the same Mach number,  lift coefficient,  and center of gravity. 

An effective,  flexible,  and simple flight-planning procedure to determine the flight 
test conditions as a function of weight and altitude to provide constant   M , CL ,  and 
center of gravity can be achieved by using a nomograph such as that in Figure 39.    In 
this nomograph   W , M ,  CL ,  and   q   are variables,  and center of gravity Is constant. 
The nomograph is based on the following two basic relations for lg flight: 

W   =   CLqS (110) 

and q   =   0.7pM2 . (Ill) 
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It assumes the weight distribution, which could influence structural deformation, to 
be essentially constant. Inasmuch as CL is a constant for any one Mach number con- 
dition being investigated, the following expression is readily derived from the above 
equations and constitutes the basis for the nomograph: 

El 
Pi 

(112) 

The subscripts 1 and 2 denote the initial and compatible second condition. It will 
be noticed that, for any one initial weight Hl   at altitude h: (as typified by 
pressure pt), the vehicle will have to be at a weight W2 at altitude h2 to maintain 
the same CL at the selected constant Mach number. 

To illustrate the use of the nomograph, consider an aircraft to have a weight of 
411 x 103 lb at the time a stability maneuver wns performed at Mach 2.34 at 55 x 103 ft. 
These initial conditions, which have been spotted on Figure 39, show the dynamic pressure 
to be 730 lb/ft2. If it is desired to perform the next stability maneuver at 
q2 = 450 lb/ft

2 , the intersection of q2 (450) and the constant Mach lire (2.34) 
determines the new altitude, h, , to be 65 x 103 ft. The intersection of the constant- 
altitude line with the constant M , 
1 determines the weight (W2 = 252 x 

C, , center-of-gravity line extended from condition 
10 lb) required to provide the same K and C, 

at condition 2 as was present at the time of the stability maneuver at condition 1 
(center-of-gravity being constant). 

The nomograph is invaluable in systematic flight planning for determinat on of aero- 
elastic effects. It permits on-the-spot changes in planned flight conditions. It also 
accentuates the large changes in weight required to obtain significant changes in 
dynamic pressure to assure aeroelastic flight data which will be outside the area of 
experimental error of uncertainty. 

6.4 Control Inputs 

The method of analysis selected governs the control input. The magnitude and duration 
of the input influence the magnitude of the perturbation. In the case of an aerodynamic 
coefficient that is highly nonlinear with respect to an independent variable, different 
magnitudes of the perturbation may result in different magnitudes of the derivative of 
the coefficient in analyzing flight data. Thus, in comparing flight results with wind- 
tunnel data, it is essential that the wind-tunnel value of the derivative be based not 
only on the same trio condition but also on the same magnitude of perturbation as the 
flight data. 

Where nonlinearity of the coefficients is not a factor and, in lieu of increase of 
instrument scale factor, larger perturbations of the independent variables are rtesired 
to provide more accurate readability of the records, larger control inputs or co«"ilex 
control inputs may be used. Figure 40 shows the increase in amplitudes of recorded 
quantities resulting from a change in control input. 

6.5 Maneuvers 

Maneuvers performed for determination of stability and control derivati, ■? from 
flight data should be compatible with the requirements of the method of analysis to be 
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employed. Current practical methods of analysis, whether they involve approximate 
equations solving for individual derivatives or comprehensive techniques solving a 
number of derivatives, have limitations in their utility; as a result, different types 
of maneuvers are employed within the range of their individual limitations to obtain 
the derivatives. As a generality, it might be said that typical handling-quality 
maneuvers are employed in the determination of derivatives wherein analytical techniques 
are used. Included are longitudinal elevator-pulse maneuvers, pullups and push-overs, 
pullups and releases, rudder-pulse and aileron-pulse maneuvers, constant-heading side- 
slips, recovery from sideslip, and rudder-fixed rolls. 

When flight maneuvers applicable tt rmalytical technique for derivative determination 
are not available or usable, the airplane response to random inputs is analyzed to give 
limited stability data. This is accomplished effectively with the aid of an analog 
computer, using a technique involving the matching of analog and flight time histories. 

6.5.1   Pulse Maneuvers 

The simple pulse maneuver, shown in Figure 41 for a longitudinal perturbation, is 
the current mainstay for derivative determination. Normally, for this maneuver the 
airplane is trimmed at the desired angle-of-attack, altitude, and Mach number, and a 
free oscillation is initiated by an abrupt pulse - an elevator pulse for longitudinal 
oscillation, a rudder or aileron pulse for lateral-directional oscillations. The 
resulting free-oscillation of the aircraft is allowed to damp out with the controls 
held fixed at the initial trim setting. With an irreversible control system, this is 
easily accomplished by releasing the controls. On tailless aircraft, even small in- 
advertent control inputs during the free collation can significantly affect the 
damping and, hence, the damping derivatives. Moderate inadvertent control inputs can 
affect the period of oscillation, as well as the damping, and then influence the static 
derivative results as well. 

Prse oscillations are also initiated by release of controls at the end of a side- 
slip maneuver end at the end of pullup and push-over maneuvers. 

In investigating the effects of angle ox attack and load factor when utilizing the 
pulse maneuver in an elevated g turn, the application of the pulse technique is 
limited by the difficulty of performing a good maneuver. Difficulty has been exper- 
ienced during the maneuver in holding the proper bank angle to maintain constant load 
factor and Mach number. With a conventional control system, exceptional piloting 
skill is required to maintain fixed control during the airplane oscillations at 
elevated g . The use of the airplane damper as a device for applying a known deflec- 
tion signal to excite the desired unaugmented oscillations (Fig.42) offers a means of 
improving the quality of the data for elevated g conditions as well as lg conditions. 

In well-performed pwl'-e maneuvers and lightly damped oscillations, it is possible 
to determine a 2-second terioi to within 0.02 second. Good accuracy in damping can be 
measured for d«nping ratios less ciian 0.2. The accuracy of period and damping measure- 
ments becomes rather pc> r for damping ratios greater than about 0.3. 
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6.5.2   Constant-Heading Sideslip Maneuvers 

In the absence of pertinent aid applicable pulse-maneuver data or in an effort to 
complement such data, the constant-heading sideslip maneuver can he used to determine 
the weathercock and effective dihedral derivatives   Cn/3   and   Cj» , provided control - 
effectiveness derivatives are available from other maneuvers. 

Because of frequent loose usage of terminology,  the expression "steady sideslip" is 
used when "constant-heading sideslip" is meant.    Actually, a sideslip can be accom- 
plished, as shown in Figure 43, as a wings-level sideslip in which yaw rate and, hence, 
a changing heading is involved, as a constant-hea ing sideslip in which a constant 
linear flight path is maintained (r = r = 0). or as a combination of thp.o two varia- 
tions of sideslipping maneuvers.    The distinctions in the variation of the sideslip 
maneuver affect the parameters involved in the analysis of the flight data and the 
format of the equations employed. 

It is difficult to per£-*m the sideslip maneuver as a steadily increasing sideslip 
at a constant heading without experiencing angular rate and acceleration transients. 
A more successful approach to the maneuver is to increase the sideslip in Increments 
in order to damp out the angular rates at each increment before proceeding to the 
next increment.    Although this manner of accomplishing the maneuver Involves more time, 
it is justified by the refinement und resulting usable data. 

6.5.3 Pullup and Push-Over Maneuver 

This maneuver, or any one of its variations,  is intended primarily for handling- 
qualities investigations.    However,  the control-effectiveness parameter,    Cn$    ,  can 
be mathematically determined from the initial phases of the maneuver.    The maneuver 
is useful also in determining the other longitudinal derivatives by analog-matching 
techniques. 

6.5.4 Recovery-FromSidesIip Maneuver 

This maneuver has been valuable for determining lateral-directional derivatives by 
the analog-matching technique.    Good conditioning is achieved by first reducing rudder 
input to half the value present at the end of a constant-heading sideslip and then 
releasing it.    This maneuver is considered in more detail in Section 7.8.4. 

6.5.5 Elevated-g Turn Maneuver 

The use of this maneuver in derivative determination was discussed in Section 6.6.1. 

6.5.6" Roll Maneuver (Rudder-Fixed) 

This maneuver lends itself to the determination of Cj  and Cl8 , even though it 
is primarily a handling-qualities maneuver. In its execution, the roll is initiated 
by an abrupt aileron step input. The initial phase of the maneuver, up to maximum roll 
rate, is the useful portion for derivative analysis. The initial phase involves neg- 
ligible sideslip, an essential factor in its utility for derivative analysis. 
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7. ANALYSIS OF FLIGHT DATA 

Of the many methods proposed Irr determination of stability and control derivatives, 
only a few are practical for a relatively rapid determination of the derivatives using 
approximate equations. The limitations of these equations must be known in order to 
avoid improper application:. Of the more comprehensive techniques of analysis proposed, 
the graphical time-vector method appears to be the most practical and provides reliable 
results within the limits of its applications. When analytical techniques are not 
applicable, analog matching of flight data has proven to be a practical technique for 
determining derivatives from flight data. In the following sections, the preceding 
techniques are discussed at some length. Comments on other detailed methods are also 
included. 

6.6 General Comments 

The maneuvers discussed constitute those commonly used in mathematical analysis of 
flight data for derivative determination wherein approximate expressions for deter- 
mining individual derivatives or a more comprehensive technique, such as the graphical 
time-vector method, is employed. Many of the approximate expressions and the time- 
vector method are dependent upon control-fixed free-oscillation data which are not 
usable when damping is high, thus leaving a vacuum for mathematical analysis of suitable 
data. Least squaring of the equations of motion has not been too successful, inasmuch 
as proper conditioning of the motions is difficult to establish and the requisite 
accuracy of the recorded data appears to be lacking. In the absence of suitable mathe- 
matical techniques, recourse is made to analog matching of higher damped oscillations 
and response to random inputs. 

At times, it is desirable to perform maneuvers for power-off as well as power-on 
conditions to investigate the influence of inflow effects of jet exhausts and possibly 
other jet-exhaust effects. This may not be operationally feasible for jet engines. 
Jet-exhaust effects of rocket-engine aircraft have been studied by performing free- 
oscillation maneuvers just prior to and immediately following power cutoff. Only 
limited ranges of the records were usable for the power-off oscillations because of 
the decelerations and changes in altitude. 

The analysis of data of a complete flight program for the; determination of stability 
derivatives can be tedious and exacting. The number of computations necessary for an 
effective analysis of the data makes it apparent that systematic procedures are helpful. 
Tabulation forms, ;iuch as shown in Table VIII, that include many pertinent flight 
quantities have proved to fcc helpful. 

!"- 
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Inasmuch as flight-test instruments are referenced to the body-fixed axes, the 
derivatives are considered with respect to these axes.    Conversion of the derivatives 
from the body to the stability system of axes,  if required,  is accomplished by the 
equations listed in Section 2.2. 

7.1   Fundamentals of the Time-Vector Approach 

Inasmuch as some of the approximate equations are based on time-vector considerations, 
it is opportune to briefly discuss time-vector properties.    Time-vector methods of 
analysis make use of the time-lnvariance of the amplitude and phase relations between 



■sg^uiw"jüj'iiae!'1 ' n^ i"*»-j-'».. SB "   l"' 
---~, »»>■ - ~W 

.■ "' 

52 

the degrees of freedoa of an exponentially damped sinusoidal oscillating system (second- 
order linear system) and the differential and integrals of the degrees of freedoa to 
determine the values of these amplitude and phase relations, or to determine the con- 
stants of the system of equations. 

Consider the damped, transient, sinusoidal, small-perturbation oscillation of the 
rolling degree of freedom.    This simple system is described by 

Ap + 2$wnAp + &>*A0'   =   o 

The solution to this equation is 

M>'   = !A4>'le"{<Vcos^n,t , 

«here "nd = V<» " £2) 

(113) 

(114) 

(115) 

Differentiating with respect to time t , 

Ap   =   lA^'l^e"1"»* £cos (o>ndt + 7T) + /(l - £2) cosf<undt + -1 

-{«   t / Tt \ 
-   lA0'lo)ne     n   cosiest + - + $J   . 

•here   $d   is the damping angle 

(116) 

$H    =   tan"1 - i L 
(l - £*) 

Similarly 

•^t Ap   =   |A<£'|<y * e     n   cos (wnrtt + TT- + 2%) . 

(117) 

(118) 

Equations (114), (116), and (118) show that the amplitudes of these equations shrink 
at the same rate and the phase relationship between the amplitudes Is time invariant. 
The amplitudes of the first and second derivatives of A0' are equal to the amplitude 
of A<£' multiplied by the undamped natural frequency, <an , and by w* , respectively. 
The phase of the derivatives is a function of the damping angle, $d , which Is a 
function of the damping rat^o, £ . As shown in Figure 44, velocity vector Ap leads 
the displacement vector A0' by (90 + $d), and the acceleration vector Ap leads the 
displacement vector (180 + 2$d). 

Where more than one degree of freedom is involved in the damped, sinusoidal, tran- 
sient oscillation system, and the frequency is common to all the freedoms involved, 
the instantaneous absolute values of the rotating vectors may be considered as ratios 
(referred to as amplitude ratios) and the phase relations of the ratios established. 
These ratios of the rotating vectors and their corresponding phase angles are time 
invariant. As a result, the instantaneous value of any one degree of freedom may be 
readily determined if the characteristics of any one of the motions are known and 

% 
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the amplitude ratio and phase angle relative to the characteristic motion are known. 
For example, if the known characteristic motion is 

-Xa>   t 
Ar   =  Ar e     '  COB (<»ndt) 

and, if   |A/3|/|Arl .   lApi/IArl . $»_ . and   $._   are known, then 

ß-  CW'Vco.K,t*V 

(119) 

(120) 

a, 

i 

cos (o)ndt + $pr) (121) 

Hie time invariance of the amplitude ratios and their phase angles permits the re- 
presentation of any one of the linearized equations of motion by vectors.    For example, 
by substituting Equations (119),  (120), and (121) and tid differentials of Equations 
(119) and (121) into the linearized,  small-perturbation,  rolling-moment equation,  the 
following format is obtained, using.the  Ar   vector as the reference for the amplitude 
ratios and phase angles 

I.   IAp| i     lAfl ,_ |Ap|   b   .. lArl   b   .. 
m IÄ7I Z^-qÄ IÄH Z§"-% 1^1  «^-(C.r-CiP^ -A„    -   0 ,       (122) tp lArl 2V     pr lArl 2V 

.4$ 

where 

jApl 

I Ar I 
<H 

|Ap| 

'n lArl 
|Af| 

I Ar I 
=     Ct)„ 

lArl 
lArl =   1 . and *rr   =   0. (123) 

Hie vector properties described, plus the requirement that the vector polygon re- 
presenting any one equation must close, make possible the determination of two unknown 
derivatives in any one equation.    Ihe accuracy with which the unknown derivatives are 
determined is dependent not only on the accuracy of the amplitude ratios used but also 
on the accuracy of the phase angle and the sensitivity of the unknown derivative to 
small errors in the phase angles. 

It should be noted that the introduction of cross-coupling terms into the equations 
of motion would result in nonlinear equations and, hence, time-variant relations of 
the cross-coupling terms relative *o the other terms. i  i 

7.2 Basic Flight Data 

Application of many of the simpler equations for determining derivatives requires 
an evaluation of the period and damping; whereas, application of the time-vector method 
requires, in addition, the determination of amplitude and phase relationships. These 
quantities are obtained from the free-oscillation portion of the pulse maneuver, as 
illustrated in Figure 45. The spacing of the peaks of the oscillatory motions deter- 
mines the damped natural period, and a comparison of these peaks for the different 
oscillatory quantities determines their phase rrlrtionship. Determination of the 
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phase relationships by an averaging process, typified by the table in Figure 45, has 
provided more consistent data than obtained by single readings. The first line of the 
example table lists the time of occurrence of consecutive plus and minus peaks of the 
roll rate Ap . Similarly, the second line lists the plus and minus peaks of the yaw 
rate Ar . The third line lists the time difference of the first two lines in each 
column. Since the yaw rate Ar is the reference in this instance, the signs in the 
third line Indicate that the roll rate Ap lags the yaw rate Ar . The values in the 
third line are averaged and converted to degrees. 

It will be noticed in Figure 45 that a yawing divergence is evident in the yaw-rate 
record. To isolate the oscillatory motions and determine the time to damp the oscilla- 
tions, exponential curves are drawn as shown. A semilog plot of the double amplitudes 
included between the exponential outlines of each motion versus time establishes the 
time to damp of the oscillations (Fig.46). A comparison of the plotted double ampli- 
tudes of the variables determines the amplitude ratios. 

As stated earlier, accuracy of measuring period and damping becomes rather poor for 
damping ratios greater than about 0.3. Generally, configurations tested at moderate 
and high altitudes and without damper augmentation have been rather lightly damped so 
that free-oscillation methods of analysis can be applied with good accuracy. 

The damping ratio £ , damping angle $d , and the undamped natural frequency wn 
are obtained, 
relations: 

for both short-period and phugoid free-oscillations,  from the following 

I   =   sin tan 
j /'01693PS 

27TT 
(124) 

$,»   =   tan -l '0.693PN 

>277-T 
(125) 

i/2> 

2r2 
<     =   ^d  + <& (126) 

7.3   Determination of   a   and   ß   From Free Oscillations 
in the Absence of or Questionable   a   and   ß   Data 

7.3.1   Longitudinal Free Oscillations 

Should the   a   records be unavailable or questionable in free-oscillation longi- 
tudinal data and the pitch-rate records available,    !A«|/|Aq|    and   $      may be obtained 
by using time-vector techniques.    Once these quantities are determined,  it is a simple 
matter to plot   a   as a friction of time or, of more immediate concern, to determine 
lAaJ/IAal    for use in determining   CNa 

The complete procedure for determining   lAal/IAql , $     , and cxq IAanl/IAal is shown 
in Figure 47. The procedure Involves the application of the following linearized 
auxiliary equation to correct the sensed normal acceleration, anl , to the center of 
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gravity of the aircraft, as shown in Figure 47(a), 
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(127) 

and the vector application of Equation (56b) (Table V) in Figure 47(b) in the fonsat 

|AaJ  tM V |AQ| 

|Aq| ^anq     g|Aq|    *«Q     g )Aa|      «« 
(128) 

solve for   $       and 

|Ao| 
|Aq| 

V |Aa| 
g|Aq| 

V 
(129) 

&- 

which now permits the determination 

|Aan| 

|Aa| 

lAaJ 
|Aq| 

JAa| 

|Aq| 

(130) 

When the vector quantities Aani and Aajj are approximately in phase and Aq is 
approximately 90° out of phase with ht^  , which is usually the case, the vector 
Equation (127) may be solved by the simple algebraic format 

IA 
|AqD| 

|Aa01!  x 
(131) 

7.3.2   Lateral-Directional Free Oscillations 

Should the ß   records be unavailable or questionable in free-oscillation lateral- 
directional data, and yaw-rate records available, |A/?l/|Arl and $^r may be obtained 
by using a vector solution of the following linearized auxiliary equation to correct 
the transverse accelerometer record to the center of gravity of the aircraft, 

lAa 
\  ^-*atr 

lAri  ^ir-g|Arl  " 
+ g |Arl ** 

and the application of equation (59) in the format 

-2r M Z*. 
2   lArl    ß< 

-   2T 7T-: ^$., - 2Toi r~ Z$„ - C, sin 6 -—■ Zfy,r - 
|Ai rr I Ar I pr |ArS 

- CLtos0cos<2> -r^ £%,r - CL --A. Z$atr 

(132) 

(133) 
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where 

lAfl 
|Ar| 

=  CJ. $ r    0 rr u • 

and 

lAr 
1  |Arl 1       '    * TÄ7T   =  17TkT\    = r • Vr   =   $rr " <*> + *d)    =   - (90 + *d)  . o)n |Ar 

Figure 48 shows the application of Equations (132) and (133) to the determination 
of lAßl/lArl , $£, , and |AaJ/|A/3| . Upon solving for |Ay8|/|Ar! and $ßr from 
the graphical solution of Equation (133), it is a simple matter to obtain parameters 
with   yd  as a base,  for example 

Ap 

Aß 
JApj |Ar| 
|Arl lAySl 

and * vß V *ßr 

7.4 Equations for Longitudinal Control and 
Stability Derivatives 

The nature of the input and the ensuing free oscillations of the longitudinal-pulse 
maneuver permit the use of relatively simple methods of analysis in determining longi- 
tudinal control and stability derivatives. These methods give results comparable to 
those from the more complicated methods investigated. Only the simple methods are 
discussed at this time and only data from these methods are presented. Unless other- 
wise stated, it is to be assumed that stability augmentation systems are not operational 
during the maneuver and that the aircraft behaves similarly to a rigid structure, in 
that its behavior can be represented by the linearized small-pertur!ation equations. 

7.b.l   Control-Effectiveness Derivative, C»SS 

The control-effectiveness derivatives are determined from the initial portion, 
approximately 0.2 second, oi a rapid pulse maneuver (Fig. 49). During this part of 
the maneuver, the airplane response is almost entirely pitch acceleration, with the 
result that the pitch control-effectiveness derivative can be determined from 

C""J. 
_ Aq_ 

qSc ASe " 
(134) 

In similar fashion, the change in normal-force coefficient dm to elevator deflection 
can be determined from 

W A; 
'NS. 

an 
3SA8e * 

(135) 

With the preceding restriction in mind, it is desirable, for accuracy, to read the 
peak control input and acceleration response with a disregard of the phase lag between 
the two, as shown in Figure 49. It has been found that the time difference in peak 
values of control input and acceleration response is primarily the result of Instrument 
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phase lag and, to a lesser extent, air-mass inertia effects.    Analysis by this method 
requires instruments with flat response characteristics extending to relatively high 
frequencies (8 c/s). 

Pulses applied at slower rates, and thus extending over a longer tine interval, 
may require inclusion of damping and angle-of-attack terms in the equation, especially 
a .    This may necessitate the inclusion of instrument phase-lag corrections for   q 
and   a . 

7.4.?   Slope of the Nornal-Force-Coefficient Curve 

From the short-period free-oscillation data of the airplane with the controls fixed, 
the variation of the normal -i'orce coefficient with angle of attack may be evaluated 
from 

W |Aa„ 

qS   |Aal     =   °L 
lAaJ 
lAal 

(136) 

This expression neglects the pitching-velocity and angle-of-attack-rate terms of the 
short-perici form o? the normal-force equation (Equation (58),  Table V).    These terms 
have been found to be negligible, as will be noticed in the typical vector diagram 
(Pig.50) of the vector form of this equation wherein the pitch rate was used as the 
base of the amplitude ratios. 

In instances where "free-oscillation data" have inadvertent inputs of the elevator 
and the angle-of-attack data have been ascertained as reliable,    CNa   may be deter- 
mined by selecting those portions of the time history in which the elevator is at its 
steady-state position and plotting   an   versus   a   for a numoer of data points which 
encompass the range of   aQ   on the records.    The slope of the plotted points is 
lAaJ/IAal  .    This fundamental technique, which involves some labor, may still be the 
simplest technique where a control-fixed free oscillation is heavily damped and thus 
precludes the determination of   |Aani/|Aal    by other means. 

6 
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The derivative C^a  may be converted to the effective lift-curve slope, C|,a , 
which includes the contribution of power, by using Equation (38). The inclusion or 
exclusion of the power tenn_depends upon the influence of power. For conventional 
low-performance aircraft, Ci,a ^ CNa at small angles-of-attack. 

7A.3.  The Derivative  (CNq + CNi) 

As explained in Section 3.4, the phenomenon involving ä is different from that 
involving q . The pairing of the derivatives as (CNq + CN^) is valid only for longi- 
tudinal small-perturbation, free-oscillation maneuvers. In this maneuver, Aq and 
Ad vectors are approximately in phase and |Aü|/|Aq| ~1 , thus permitting the pairing. 
Determination of the individual derivatives Cnq and CN& has thus far defied solution. 

The determination of (CNq + CN^) itself is difficult. It may be readily deduced 
from the vector diagram (Fig.50) of the following vector form of the short-period mode 
of Equation (58), 
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CLl7?rZ$an«+CHa — ^«q + (CHq + CN&) — -Z$aq    =   0. (137) 
IAq| 

that 

(CKq + CH&)   - |Aqj £ 
|Aq|  2V 

2VCwg $, ana (138) 

The individual quantities in Equation (138) show that the degree of success in deter- 
mining (Cnq + CN^) IS dependent upon the accuracy with which   $a„a   is determined. 
This phase angle is snail, of the order of a few degrees, and, even with the best 
records and instrumentation, the error in readability of   $anq   from the records could 
be of the order of the angle itself.    Thus, it is very difficult to determine this 
derivative to a reasonable degree of accuracy. 

7.4.4   Pitching-Moment Static Stability and Damping 
Derivatives,    CBa   and (CB„ + G»a) 

The equations for the pitching-monent stability derivatives are based on the normal- 
force equation 

muAq - mAw  ~   CNaqSA<x (139) 

obtained from the short-period form of Equations (56b) and (58b) and on the short- 
period form of the pitching-ooment equation (Equation (58c)) 

I/q   =   (cBoAa + Cn(IAq ±+c^ä^-j SSc   . 

Differentiating Equation (139) with respect to tine and substituting for  Aq   and  Aq 
in Equation (58c) provides the following 

Aa + — 
2r 

nc2 

CNa_2T V«* + Cn«) 
A&- Cma + 

C«qCN« 

4M, 

qSc 
Aa 

Since (140) is a second-order linear differential equation of the form 

Aä + 2£c^A<x+o)*Aa   =    0, 

then 

a qSc    n     4MC      
q    a QSc   n 

(140) 

(141) 

(142) 

■J    ■ '»■ 
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and 

<C-Q + C"&>    =   ^ [C"a " 4rH] 

21« 

mc <*a-«Tl 
'0.693^ 

'l/2, 

(143) 

A+Cc„— A + - bB'    = "Cu mV 
(144) 

and - CNll —Ali1 + Aq   =   0 u mV 
(145) 
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The approximate form of the   CBa   equation (Equation (142)),  in which the term 
Cfflq (CNoc/4Mc)    is omitted,  results in a small error of the order of 3% or less. 

Attempts to determine   CB     and   Cm^   as individual quantities required a precision 
of flight data and analysis of these data that is difficult to achieve.    The difficulty 
arises primarily from the acuteness of the phase angle,    $•    , which is generally of 
the order of a few degrees; an error of 1° in this phase angle can result in large 
errors in the solution. 

7.4.5   The Phugoid Static Stability and Damping 
Derivatives   CCu    and   CNU 

Unlike the short-period mode of oscillation in which the velocity is essentially 
non-variant and the angle of attack is variant, the long-period (phugoid) mode of 
oscillation involves velocity perturbations and essentially constant angle-of-attack. 
This implies that any variations in aerodynamic forces during the phugoid are primarily 
the result of perturbations of the normal and axial forces due to the velocity per- 
turbations,  that is to say that 
only derivatives of concern. 

CC|I   and   CM     in Equations (58a) and (58b) are the 

Upon dividing Equations (56a) and (56b) by   V   and substituting these equations for 
Aax   and   Aan   in Equations (58a) and (58b),  respectively,  and neglecting second-order 
effects, the following approximate expressions are obtained for a phugoid initiated 
from steady-state horizontal flight: 

.-. 

t 

The characteristic equation of the phugoid described by these two equations is a second- 
order linear differential equation which takes the Laplace form 

s2 + (Öc"m7)8+v(5"»«f (146) 

It is readily recognized that 

qS 
Ccu"^   =   2W%h mV 

(147) 
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and c    — 
"nmV2   = ^ph (148) 

Transposing these two equations results in the following approximate equations for 
determining   CM     and   Ce„    fram flight data 

CN„   ^ «v.  2»^ph 
pgS 

(149) 

and 

ZmV^ph^ph    .  ^Cph^ph 
/OVB 

(150) 

The flight values of £ph and sonph are determined from the phugoid oscillations in 
accordance with Equations (124) and (126). 

An interesting byproduct of this brief consideration of the phugoid parameters 
suggests Itself. If CNu can be considered to be similar to 2CN  then Equation (148) 
takes on the approximate form 

■* *?#£)•?* (151) 

Thus, the phugoid frequency,   a), i>ph is approximately a function of velocity,    V , only. 

7.4.6   Corrections for Effects of Stability Augmentation 
System in Determining Derivatives from Short-Period Oscillations 

In performing a pulse maneuver with the stability augmentation system engaged, the 
ensuing transient short-period oscillation of the aircraft will be characterized by a 
period of oscillation and a damping ratio which will be different from those obtained 
with the pitch stability augmentation system off (Fig.51).    With the system on, the 
period will decrease with increasing damping provided by the system;  whereas, normally, 
the period increases with increase in inherent unaugmented damping.    This is due to the 
system gain and the time constant.    Thus, the gain and time constant are factors to be 
considered in equations for determining the stability derivatives, as is brought out 
in Reference 42.    The subsequent discussion is based on this reference. 

The following procedure for determining   Cma   and (CBq + Cn$) from flight data '»hich 
includes stability augmentation effects has been useful but is of limited utility. 
The principal value of the ensuing discussion is the insight gained into the complica- 
tions which may be encountered in data which include stability augmentation effects. 
For rigid-aircraft perturbations about a mean flight path, the Laplace transformed 
short-period mode two-degree-of-freedom longitudinal equations of motion may be re- 
presented in approximate,  but practical,  form as 

(s - M )Aq + (-M^ - Ma)Aa   =   MS(ASe 

-Aq + (s - Za)Aa ZSfiAS e    e 

(152) 

(153) 
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In the absence of pilot Input, the transfer function for a damper with a first-order 
tine lag may be represented by 

ASe(s) 

Aq(s) 

k 

1 + T'S 
~   k(l - T'S) (154) 

Substituting Equation (154) into Equations (152) and (153) results in the following 
determinant 

<-«* " «a> 

(s - Za) 
=  0 

[(1 + M8ekr')s + (-llQ - S$ekj] 

[(Z8ekr')s + (-1 - Zsek)] 

whose characteristic equation is 

(1 + Msekr' + MäZ8ekT')s2 + 

+ ["Za - Bq - B& - M5ek - Z^Ö5ekT' - (Sd - fia)Z8ek]s + 

+ (-Ma + ZaSq + ZJisek - SaZSek)    =   0    . 

(155) 

(156) 

Considering only those terms in Equation (156) which thus far have been shown tc be 
significant, the short-period longitudinal frequency and (** »ping of the aircraft with 
a first-order time-lag pitch damper are 

(o^)2   ~ 

2*>n 

1 + MsekT' 

-(Za + MQ + Mfr + M$ek) 

1 + Msekr' 

Solving these equations for   C^   and (Cj,   + Cm^), 

,g#+KkT')(^> n' 

(157) 

(158) 

(159) 

(Cm, + W _2Il 
mc2 

CNc 4T 
fO. 693> 

T! 
1 + M„kT'    - 

\      mVc 
kC, «8, 

1/2/ 

(160) 

Prom the above,  it is seen that   Cma   is readily determined for a first-order linear 
pitch-damper system.    The determination of (CB   + C„a), on the other hand, may offer 
a problem,  inasmuch as   CB     in   Mq    is not readily determined by itself. 

If the pitch-damper system is not a first-order linear system,  which is the case 
for many systems,  analytical solutions for   C„a   and (Cm   + CDa) are impractical.    In 
such instances, analog techniques are applied in attempts to extract these derivatives. 
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7.4.7 Representative Results 

Typical time histories, the flight-determined period and damping ratios, and the 
flight-determined longitudinal stability derivatives of the D-558-II research airplane 
have been reproduced in Figures 52, £3. and 54 from Reference 43. Most of the data 
were obtained from the all-rocket-powered version of the airplane; the remainder of 
the data is based on the jet- and rocket-powered version. 

These data have been used to illustrate representative results because they show 
the need for a concentration of flight test data in the transonic zone to establish 
the extent of any abrupt changes of the derivatives and to show the influence of 
altitude on this particular aircraft. Because the results did not include control 
effectiveness, Figure 55 shows representative data from Reference 42 for C^g . All 
data shown were obtained from wings-level pulse maneuvers and are typical of those 
that can be obtained from good flight techniques - which include control of flight 
variables, pilot skill, and instrumentation - and careful application of the methods 
of analysis discussed. 

The maximum deviation from the faired value in the stability derivatives shown in 
Figure 54 is of the order of 5% for CN„ , 10% for C, ma . and 20% for (CBq + ̂ na)> 
deviation of this order of magnitude occur in only a minor portion of the data analyzed. 
The maximum deviation of CBg  in Figure 55 is difficult to assess because the data 
shown were obtained over a large range of altitudes and elevation trim settings; 
however, the maximum deviation from faired values would be of the order of 10%, which 
would be representative. 

7.5 Equations for Lateral-Directional Stability and 
Control Derivatives 

The lateral-directional control and stability derivatives are not as readily and 
reliably determined by the use of approximate equations as are the longitudinal de- 
rivatives, because of the more complex behavior of the airplane and the larger number 
of derivatives involved. In the following discussion, unless otherwise stated, it is 
again assumed that stability augmentation systems are not operational during the 
maneuver and that the aircraft' s perturbed behavior can be represented by the linearized 
perturbation equations. 

7.5.1   Control-Efftctiveness Derivatives 

The basic procedures for determining lateral and directional control effectiveness 
are similar to those previously discussed for longitudinal control effectiveness. How- 
ever, the expressions for lateral-directional control effectiveness are complicated by 
the need to account for the possible influence of the inclination of the principal axis 
as well as the aerodynamic terms. Tests with a conventional high-performance airplane 
utilizing a rapid control pulse or step input showed that the directional control de- 
rivative, C„j , could be determined to good accuracy by considering only the inertia 
term. For example, 

*•» = [&A'-fe*-<*r-**>^A'-*p^-Vtf]£ 
100 98 -  0 -  0 

(161) 
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where the magnitudes of the Individual tens are given as percentages of the answer. 
Ibis simplification in determining Cn$r may not be applicable to other aircraft. 

For the roll-control derivative, Cjs , consideration must be given to the aero- 
dynamic derivative terms. For example, using the same high-performance airplane and 
a rapid aileron control input, 

Cli 

100   = 

Lb-Ap - 1*2 Ar - Cu — Ap - Cu — Af - CiAsl i- 
|_qSb flSb p 2V r 2V '" J \ 

73 -  4 31 

(162) 

The cross-control derivatives, Cng  and Cis , can be evaluated hy using Equations 
(161) and (162), respectively. The cross-control derivatives are usually of smaller 
magnitude and are therefore more difficult to determine. It appears that all aero- 
dynamic terms may require consideration, as shown in the following example of the 
analysis for Cns . The flight quantities were obtained from the records as shown 
in Figure 56. The time difference in the peaks of the control input and the accelera- 
tions is due to the phase lag of the instruments. The acceleration and angular-rate 
records have essentially tht correct phase relationship with respect to each other in 
this instance. The magnitudes of the individual terms as percentages of the answer 
are 

'ns. 

100 

= [itA* - feA* -(Cnr - ^ £Ar - c-p ^Ap - v*] i 
206      -     141 10 16 

(163) 

It will be noticed that the produce-of-inertia term is particularly significant in 
this example.    An error in principal-axis inclination would significantly affect the 
answer.    For instance,  in this example an error of 1/4° in the inclination of the 
principal axis (3°) would result in an error of 12% in   C„s    . 

7.5.2   The Side-Force Derivative,    Cyo 

This derivative,  which contributes to the Dutch roll mode of oscillation and is an 
index of the pilot' s ability to sense transverse accelerations,  can be determined from 
the equation 

c 

(164) 
W   |Aatl 

°*e - v W ' 
The ratio    |Aatl/|A/S|    is obtained from the control-fixed transient oscillations 
resulting from a pulse maneuver.    If tha   ß   record is suspect or missing,  the ratio 
may be determined from the   at   and   r   records as explained in Section 7.3.2 and 
Figure 48.    This indirect technique for obtaining   IAatl/IA/3|    is analogous to that 
for obtaining |Aanl/|Aa| and considers   Cyp , Cyr ,  <uid   Cy/3   as negligible 
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7.5.3   The Directional-Stability Derivative,    C^g 

The static directional-stability derivative is one of primary importance,  and good 
accuracy is required in its measurement.    Although a number of closed-form equations 
have been used, each possesses limitations which, if not recognized, can lead to 
erroneous answers.    Several of the equations are based on various degrees of degradation 
of the following expression, the derivation of which was based cs the solution of the 
determinant of the linearized lateral-directional small-perturbation equations (Equations 
(61a),  (61b), and (61c)).    The expression Includes all but the most negligible quantities. 

• 

r     \lz 1 5Sb  b 2H k* <Ch ~ ClßBina) + (Cnr - C^)    + Cip«^ - Cn/j) — — 

qS / l\     gcostf 
<h0 ^ (Car + % fj - -j- Clifinr 

2V 

b 

"iv 
qSb 

^4* 
(165) 

This equation shows that when Cn^ is small, that Is, of the order of 0.08 per radian 
(0.0014 per deg) or less, the ordinarily insignificant damping terms become important. 
In such instances, C{p is particularly significant. 

When Caß   is of an order higher than 0.0014, Equation (165) can be reduced to the 
following workable equation 

''iiß ~  5. f.\2 

qSb 
"Z + afClß-^-Ciß (166) 

This expression can also be obtained by differentiating an approximate form of 
Equation (61a) to provide 

A/3   =  -Af + ctAp +^_cy/3A/3 
mV 

and also using Equations (Cila) and (61c) with the assumption that   C;p , C{r , Cifi 
and   Cnp   arc air 
ential equation, 
and   Cn     arc all equal to zero.    Substitutions result in the following linear differ- 

A/3- 
qS qSb2 

mV *' " ^vT (C°r " W 
Z 

A/3 + 

qSb qSb I„ 
*XLß — Clß+ tf c'^sb 

X z 

A/3 0 . 

in which the frequency term is identical to Equation (166). 

(167) 

"    »I        .   ' v 
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The fact that   CD/S   is a function of   Cj^   in Equation (166) may result in question- 
able values of   Cüß   if   C{«   Is estimated fron wind-tunnel data rather than flight 
data,  especially when flexibility effects as well as other phenca^na nay appreciably 
alter the wind-tunnel values of   C^ . 

An approximation of Equation (166) provides the following simple expression, which 
is of limited utility: 

U
RJ3     - qSb *■< 

(168) 

The expression has been used successfully on occasions when angle-of-attack and dihedral 
effects were small. At low indicated airspeeds, where these effects are not snail, the 
discrepancy can be 50% or more. 

Values of CDjS have also been obtained from constant-heading sideslip maneuvers 
using the expression 

cny8 = -(Cns "r^ + Cn$a°aß) (169) 

This simple expression is obtained from Equations (61b) and (61c) with the stipulation 
that angular rates and accelerations are zero during the sideslip maneuver. The 
successful use of this equation is dependent upon the accurate determination of the 
apparent stability parameters Sr/3 and 8a« as well as the control-effectiveness 
derivatives. The results obtained from Equation (169) have shown a relatively poor 
consistency in the supersonic speed range, primarily because of the difficulty of 
obtaining sufficient sideslip angle at supersonic conditions to make accurate deter- 
mination of the apparent stability parameters. 

In instances where the influence of Ixz and Cn  is negligible, an accurate 
equation for CD/3 , without the necessity of relying on C;^ , has been derived from 
the yawing-moment equation 

■ 

•   ■■, 
r% 

■I 

z^Af - (C„r - CDfl) -Ar - C^A.d   =   0 (170) 

and the following expressions for a transient oscillatory sinusoidal motion: 

|Ar|  ..   .  -t«.t . ..   ,  -icü t        i n        \ 
Ar   =   j—i lArle     n   cos (w„dt + #f r)    =   o^lArle     n   cos Ia)„dt + - + #d) 

Ar   =   lArle     n   cos (a>„dt + $rr)    =    |Arle     n   cosc^t 

lAfll ,   -£a> t 
äß   =   — lArle     n   cos (wndt + ^r) 

(171) 
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Substituting expressions (171) into Equation (170),  expanding by trigonometric identi- 
ties, and regrouping results in 

<wscos$d + Cnfl 
w       1 

*Ä7   8in^rJ sin wndt - 

^^„8in*d + (Cnr- C^) ^ + Cn/3 £-*] cos o^t   =   0 .      (172) 

The first bracketed quantity is a summation of components perpendicular to the  Ar 
vector; the second is a summation of components parallel to the  Ar   vector.    Hence 

(173) 

and 

^n8in$d + (CBr-CB4)~+Ci 
M cos ßr (174) 

Considering only Equation (173) at this time,  if the phase angle   $gr   is of the order 
of 90° and the damping angle is small - which are the conditions normally encountered - 
then   sin $^r   and   cos $d   will each be similar to 1 and Equation (173) can be trans- 
posed to 

h  |Arl 
(185) 

This equation provides accurate values of 
tions imposed in its derivation. 

Cnß > provided it is used within the limita- 

Table IX lists the results of the application of Equations (165), (166), and (168) 
to flight data of the f-104 and YF-102. The values of Cn^ , as determined by Equation 
(l'J5), are used as reference values. For the P-104, Equation (156) shows good corre- 
lation with the reference value because of the high value of Cn/3 , whereas the simple 
frequency equation (Equation (168)) shows poor agreement. For the YF-102, which has a 
low value of Cn/3 for the flight condition shown, Equation (166) shows a significant 
discrepancy with reference Cn/S and points up the influence of the doping terms when 
Cu£ is small. For this same case, it will be observed that the simple frequency 
equation 1B unworkable. 

A relative comparison of the results obtained for the F-100 airplane U3ing Equations 
(166), (168), and (169) and the results obtained using the more comprehensive graphical 
time-vector method (to be discussed later) are shown in Figure 57. Considering the 
graphical time-vector results as most representative for the airplane, it will be 
observed that the simple frequency equation (Equation (168)) would show poorest corre- 
lation at low subsonic speeds due to angle-of-attack and dihedral effects not accounted 
for in the equation, whereas Equation (169) shows poorest results in the supersonic 
region because of the difficulty in obtaining accurate values of Sr^ and 8a/S . 

S 

g ■■A': .'§: 
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Table X compares the values of C^ determined froa analog matching of oscillatory 
maneuvers of the X-15 airplane with values of Cnß   determined from Equations (166) 
and (175). The values of Ixz and Cn  are essentially equal to zero on this vehicle. 
The agreement between analog values of Cn^ and the equations is good. In aquation 
(166), the agreement is due to the high value of CUß • Equation (175) would be the 
more desirable to use on this airplane because it does not depend on the use of Cj« 
for a solution. 

7.5.4 The Effective Dihedral Derivative,    Cjo 

Several simple equations for Cj„ are available with limitations on their utility, 
as in the case with most simplified equations. 

Values of C\ß   can be obtained from the constant-heading i,Jdeslip maneuver using 
the expression 

Clß   =   -<Ci8r8r/3 + CiSa8a/3) (176) 

The derivation of this expression and circumstances limiting its accuracy are identical 
to that brought cut for its counterpart (Equation (169)). 

A comparison of Cj^ determined by Equation (176) and the more comprehensive 
graphical tine-vector method is shown in Figure 58 for the F-100 airplane. At low 
Mach numbers, the results from the sideslip equation (Equation (176)) compare favorably 
with the time-vector results; at high Mach numbers, a large discrepancy exists between 
the two methods. Even though C\a   is not one of the derivatives determined most 
accurately by the time-vector method, the vector method is the most practical analytical 
means available for evaluating this derivative. f 

In instances where the influence of Ixz is negligible, it is possible to combine 
Equations (166) and (175) to obtain 

lArl J_ 
M a; " l (177) 

The use of this equation is subject to the additional restriction that it should not 
be used when CD/S is small, as was noted in the discussion of Equation (166). A'so, 
the equation must be used with caution when the angle-of-attack is less than about 
3° or 4°. When the angle-of-attack is less, (|ArI/IA/S!)(l/o>n) may approach 1.0 and 
the error in reading !Ar!/IAßl from the flight records may result in an error in 
(|Arl/|A/3|)(i/«n) that may exceed the net magnitude of the parenthesized quantity. 
If the ß   record is the major contributor to Inaccuracy in the amplitude ratio, the 
technique discussed in Section 7,3.2 may be employed to determine the ratio without 
recourse to the actual ß   record. 

A final precaution regarding the use of Equation (177) is in order. At very low 
angles-of-atteck, the error in the flight-detentined values of a can produce large 
errors in the equation; also, as a approaches zero, the equation approaches an in- 
determinate form, inasmuch as the bracketed quantity itself approaches zero. 
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7.5.5   The Damping-in-Roll Derivative,    C;_ 

Simple expressions for the determination of   Cj     are dependent upon a roll maneuver 
Initiated from win?s-level flight by a step input of the ailerons.    The derivations of 
the expressions impose the restrictions that yaw due to aileron,    Cn?    ,  sideslip due to 
the effective dihedral,    Cj^ , and product-of-inertia effect are negligible.    If these 
highly restrictive conditions are satisfied, the following relation can be employed 

C1D   =   -Cfc 
AS. 

aA b 
Ap  — 

1 2V 

(178) 

In using this equation, Cj$ can bo determined from the initial part of the control 
input as . scussed in Section 7.5.1 snd Apt is determined at some time point, tx , 
on the roll-rate time history where   Ap   is zero - the region of steady-state roll. 

If desired, the separate determination of   CjS     can be avoided by solving for 

Cjs Ap.    b 
1*   = -i  (179) 

Cl, ASaj 2V 

and substituting this ratio into the equation 

Cl, r^Ap. 
qSb  2 

Ap, 
b  Czs 

2V  Cjr 
a2 

(180) 

resulting in the format 

Ch   -   = 
2I.V 

qSb< 
ApJ 1 

Ap2 
A5a, 

-Ap,     az 
!A8ai 

(181) 

In these last two equations,  the subscript 2 indicates that   Ap   and  Ap   were obtained 
at a time point 2 on the roll-rate time history, preferably at the point of maximum 
rolling acceleration. 

Although the restrictions imposed at the beginning of this section seriously limit 
the application of these equations, the last equation (Equation (181)) is interesting 
in that it shows that   Cj     can be obtained without requiring the solution of   Cj*    . 

7.5.6   The Effective Damping'in-Yaw Derivative,  (Car - Cnö) 

It was pointed out in Section 3.4.4 that   Cr>r   and   Cnö   may be combined as an 
equivalent derivative,  (Cnp - Cnß), only for oscillatory maneuvers, providing the 
stability axis system is being considered or that the angle-of-attack is small if the 
body axis system is used.    When the body axis system is employed,  this is tantamount 
to saying that when the amplitude ratio    |A<//'|/IA/?I ~ 1 ,  at    a < 3° 
Cnö   may be combined as an equivalent derivative for yaw rntes. 

or so,    C„ and 
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The combined derivatives are frequently shown in the results of analysis of oscilla- 
tory motions relative to body axes, even though this amplitude-ratio condition is 
exceeded.    When this is done,  it means that an effective value of   C„r   has been obtained 
which includes the influence of   Cnö   and the results of the analysis based on the use 
of the actual    \&p'\/\&ß\, 
tribution of Ar   and  A/3 

have produced an answer which is equivalent to the net con- 
to  Ac     in terms of  Ar . 

An approximate equation for (CDr - C„^) is obtained directly from the damping term 
of the second-order differential equation (Equation (167)).    Inasmuch as 

24"„    = 
qS       qSb2 

mVCy^g     2VIZ 
(Cnr - Cn/$) (132) 

a transposition results in 

(Cnr - C„^) 
2£0nV   +   Cy£ 

(183) 

Considering the assumptions made in deriving Equation (167),  from which Equation (183) 
was obtained, and the stipulations regarding the combining of   Cnf   and   CBß ,  it may 
be stated that Equation (183) will provide better accuracy when    |Ai/>'|/|A/3l ~ l   and 
as    lAp|/|A/3|    decreases to satisfy the condition that 
influence on the equation. 

Cip   and   Cn     have a negligible 

An approximate equation for (Cnr - CD/g) which has been used successfully in the 
X-15 airplane flight test program was derived from Equation (174) 

qSb 
Ssin*d + (Cnr - C„/0 — + C, 

W 
nßi 2V ^ |Ai 

cos' ySr 

This equation is a summation of yawing-moment components parallel to the   Ar 
during a free-oscillation maneuver and is subject to the restrictions that   I 
Cn     have a negligible influence on the yawing moment. 

vector 
and xz 

Since   $gr   generally varies only a few degrees from 90° for angles-of-attack less 
than about 15°, and since the damping angle is small,  the preceding equation can be 
reduced and transposed to 

(Cnr - CnÄ)    ~   - £a>, 
I, 

n fc 

qSb — 
2V 

1.386 VI z 

(184) 

5Sb*Tl/2 

Analog records of free-oscillation maneuvers of the X-15 airplane,  on which   C„ 
and   Ixz   are essentially zero,  were analyzed for (Cnr - Cn^) by using Equations (183) 
and (184).    The results,  presented in Table XI,  show that the latter equation was better 
suited for determination of the effective damping-in-yaw derivative,   for angles-of- 
attack up to approximately 12°, than Equation (183) for this vehicle. 
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7.5.7 Correlation for Effects of Stability Augmentation 
System in Determining Lateral-Directional Derivatives 
from Dutch Roll Oscillations 

When lateral and directional stability augmentation systems having first-order time 
lags are operational during a Dutch roll (free-oscillation) maneuver,  the effects of 
the augmentation system on the frequency and damping of the oscillations and on 
|Ar|/|A/3l    may be accounted for in the same manner as was done for the longitudinal 
mode of oscillation in Section 7.4.6. 

7.6 The Graphical Time-Vector Technique 

The graphical time-vector method of analysis44"u7, the principles of which were dis- 
cussed and applied in the initial part of this section, is the most common manual 
technique used far determining the lateral and directional derivatives. Successful 
application is dependent upon availability of control-fixed, Dutch roll oscillation 
data wherein the damping ratio is less than approximately 0.3 to permit definition of 
the period of oscillations, the log decrement of the damping of oscillations, amplitude 
ratios, and phase angles. 

7.6.1   Advantages 

One advantage of the method is that the procedure is manual, and the analyst is 
afforded a graphical presentation of various factors affecting the solution. 

Another advantage is that it is possible to obtain solutions when the /3-vane records 
are available, suspect, or when it is desired to avoid applying corrections to these 
records. Bypassing the ß   records was discussed in Section 7.3.2. It was shown that 
the vector polygon of the transverse-acceleration equation is essential in the solution 
of the amplitude ratio, |A/3|/|Arl , and the phase angle, $gr . Both of these quanti- 
ties are used in the vector polygons of the rolling- and yawing-moment equations to 
determine CLg and Cjo when the vector is used as the base for the amplitude ratios 
in the equations, as in Figures 59(a) and 59(b).  The phase angle is used in the 
orientation of the A/3 vector in relation to the Ar vector and provides a more 
accurate value of $g  than can usually be obtained directly from flight records. 
The amplitude ratio,  |A/3|/|Arl , is used to extract Cn3   and CiB   from the deter- n-3 
mined values of   Cn/3 lA/31/IArl    and   C^ |A/3|/|Ar|     in Figures 59(a) and 59(b) 

7.6.2 Disadvantages 

One disadvantage is that the development of a definite technique is required on the 
part of the analyst to minimize what would otherwise constitute a rather time-consuming 
and tedious effort to obtain a consistent and reliable set of results. 

Another disadvantage is that only two of the three derivatives in each of the rolling 
and directional moment equations may be determined by means of the vector diagram, thus 
necessitating an intimate or a wind-tunnel value of one of the derivatives in each of 
the equations. Since Cn  and Cjr terms in the vector diagrams (Figures 59(a) and 
59(b)) are the smallest vectors, it is customary to estimate these quantities. The 
errors in the estimated values of C, 
in Cjr will generally affect Cj 

np will affect (C„r - Cnß)  primarily; the errors 
primarily, but to a much smaller extent. For low 

angles-of-attack, (CDr - Cn^) may be estimated by using Equations (183) or (184) within 
the limits of their applicability. 

:■.- \ 
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7.6.3   Application of the Graphical Time-Vector Technique to 
the Df:termination of   CBo ,   (Cnr - Cnp.    Olß ,  and   Cj 

Figures 59(a) and 59(b) show the application of the graphical time-vector technique 
to the determination of   C^ , (C,^ - C^),    Ci^ , and   C{p .    The amplitude ratio, 
lApl/lArl , and the phase angle,   $pr , «ere determined from a semilog plot such as 
that in Figure 46.    The ratio |A/3|/|Ar| and phase >ngle   $ar   were obtained from a 
transverse-acceleration diagram as discussed in Section 7.3.2.    The remaining required 
amplitude ratios and phase angles were determined as follows 

lApl              |Ap! 

lArl    =   "* lArl  : 

1 

lArl 
lArl    =  ^ : ffr    =   90 + $d 

lArl 
lArl    ~   * : $        =0 *rr          "   • 

CDp   and   Cjr , which have relatively small influen 

(185) 

The derivatives 
were obtained from wind-tunnel data. Assuming there is no question of the accuracy of 
the data, the tunnel data should be based oi. oscillatory tests, inasmuch as the flight 
data are based on an oscillatory maneuver. 

With the various known vector quantities properly oriented in the respective diagrams, 
the diagrams were closed and the unknown vectors determined by drawing the unknown 
vectors in their proper phase-angle directions, $  and $or . The newly determined 
vectors, such as -Cn^(|A/S|/|Arl) and (Cnr - C^) (b/2V) , were then reduced to obtain 

Cn/3 • <cnr - Cn^). ?lß  . and Cip . 

Figures 60(a) and 60(b), from Reference 43, show the results of the application of 
the graphical time-vector technique to the rocket-powered D-558-II research airplane. 
An interesting aspect of the results is the influence of power on the stability 
characteristics of this airplane. 

At times there may appear to be an incompatibility within wind-tunnel data when the 
data are compared to flight-determined derivatives. It then becomes imperative to 
resolve the discrepancy within the tunnel data and between the tunnel data and the 
flight data. This is illustrated in the following example wherein Cna was relatively 
low. 

Dynamic model tests of a relatively rigid high-performance aircraft at a set Mach 
number and a = 6.6° showed that CDp = 0.01 and (Cnr - Cnfi) = -0.14 . Tunnel data 
also showed C„^ to be equal to 0.055 on the basis of static tests and equal to 0.0757 
on the basis of oscillatory tests. Flight data obtained from time histories of con- 
vergent transient oscillations of the quality shown in Figure 45 Indicated that, when 
the wind-tunnel value of Cn = 0.01 was used in the time-vector solution, Caß   was 
equal to 0.071 and (CDr - Cn^) was equal to 0.313, It was obvious that 
(Cnr - Cn/j) = 0.313 was not representative of the true characteristics of the aircraft 
in the Dutch roll mode, since its positive value indicated an oscillatory divergence, 
whereas flight data showed oscillatory convergence. 



72 

A check of the phase angle $  (-104°) by several analysts showed agreement within 
a few degrees. It was decided that a reasonable spread of uncertainty for the quality 
of data - corrected for instrument phase lag - would permit $  to be 105° ±5°; at 
worst, the uncertainty would be ±10°. Accordingly, solutions for C„» and (CDr - Cn/§) 

(within the spread of un- 
The results shown in Figure 61 in the form of a grid plot indicate the 

and 
the incompatibility of the wind-tunnel data. The tunnel data were incompatible even 
when allowances were made for unvertainties in inertia characteristics and readability 
of flight data. 

were obtained by uring various values of Cn  and $ 
certainty). ~    " *      " ~" 
sensitivity of the determined values of Cüß   and (Cnr - Caö) to Cn„ and $ 

Use was made of approximate Equation (183) with due consideration to the limitations 
of the equation for higher angle-of-attack conditions to aid in establishing the magni- 
tude of (C„r - Cn/§). For the test condition of an angle-of-attack of 6.6°, the -0.458 
value of (Cnr - (^g) obtained by Equation (183) could be in error to the extent of 
100% or so. Hence, it was estimated that the correct value of (CDr - Cn,;) was closer 
to -0.20 than -0.458. Also, considering that the state of the art in obtaining 
(Cur 

_ Cnß)  from wind-tunnel tests was more reliable than in obtaining C„p , the tunnel 
value (-0.14) of (CDr - Cn^) was surmised to be representative of the true value of 
this derivative. Uncertainties in the inertia characteristics required that some 
deviation be allowed in this value in obtaining (Cnj. - Cnn)  from flight data. It was, 
therefore, concluded that the results of the analysis should lie within the shaded 
area shown in Figure 61. Within this area, the value of Cnß    (0.054) compatible with 
$pr = -104° and (Cnr - C^g) = -0.14 was considered to be a mean value and w*s used 
as an analytical result. The corresponding value of C„  should have been approximately 
-0.04. 

The best accuracy in determining Cn^ and (Cnr - CD/g) is obtained wbn |Ap|/|Arl 
is small, at which time the influence of Cnp is relatively small. When the roll-to- 
yaw ratio is large, it may be advantageous to estimate (C„r - Cn^) and attempt to solve 
for Cn . For low angles-of-attack, (C„r - CD/g) may be estimated by using Equations 
(183) or (184) within the limitations of their applicability. 

The best accuracy in determining Ciß   and Cj_ 
ratio is large. At this time, the influence of C/r is relatively small 

is obtained when the roll-to-yaw 
In either 

case,  the static derivatives,    Cnß   and   C 
rotary derivatives,   (Cnr - CD/g) and   Cjp 

■Iß are determined more accurately than the 

It was previously pointed out that the accuracy of analysis becomes rather poor for 
damping ratios greater than 0.3. Although a good approximation of ehe damping ratio 
for heavily damped aircraft may be obtained by comparing flight records with records 
of heavily damped motions - the damping ratio of which is known - it becomes difficult 
to draw accurately the exponential envelopes of the oscillatory motions to obtain 
reliable values of amplitude ratios. 

7.7 Other Analytical Techniques 

The preceding discussions regarding determination of derivatives from flight data 
have shown various limitations. The graphical time-vector technique, although the 
most successful, is not usable for damping ratios in excess of about 0.3, requires 
control-fixed transient oscillation data, and requires the assumption of some deriva- 
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tives, which may, at times, cause difficulties in solutions. To overcome the limita- 
tions of the preceding techniques, a number of methods have been proposed for the 
comprehensive determination of derivatives (References 48-54, for example). Some have 
been successful in practice; others have not. In most instances, the degree of sophisti- 
cation involved in the proposals requires automatic data-reduction equipment and the 
time and effort does not warrant their use when analog equipment is available for 
application of analog-matching techniques. Several of the methods are considered in 
the following sections. 

7.7.1   Least Squaring of the Equations of Motion 

A logical and straightforward method, on the sophisticated side, for determining 
derivatives from flight data is the application of the least-squaring technique to the 
linearized equations of motion. Plight quantities at discrete time points are sub- 
stituted into the equations of motion. Many more data points are selected than the 
number of unknowns, and a least-squares process is applied to evaluate the unknown 
derivatives. As logical and simple as the approach may be, it has not been employed 
too successfully for several reasons, including: difficulty in properly conditioning 
the maneuver, instrumentation accuracy, phase lags between instruments, insufficient 
amplification of recorded data to provide precise readability, noise in data readout, 
and instrument alinement. 

One of the more successful attempts to apply this technique was reported in Reference 
48. To excite all the lateral-directional modes and give measurable control inputs j; 
without exceeding the limits of the linearized equations of motion, the following 
control input program was used: 

r 

"Prom trimmed level flight, step the rudder causing the airplane to yaw and 
then roll due to dihedral effect. When the bank angle reaches approximately 20 
degrees, apply a step aileron deflection such that the airplane will roll toward 
a level flight attitude. In order to obtain a sufficiently long record of the 
response to aileron, the airplane is allowed to roll to an opposite bank angle of 
20 degrees before stopping the recording and initiating recovery". 

A typical time history of this maneuver is shown in Figure 62. All instruments had 
similar response characteristics and high recording sensitivity which was compatible 
with calibration-sensitivity spread and calibration spread. Alinement of instruments 
was within ±0.3°. Recorded data were clean. It was found that noise in the readout 
data significantly affected the results. Twenty discrete time points used for the 
least-squaring process were considered sufficient. 

The results, reproduced in Figures 63(a) and 63(b), show the degree of consistency 
obtained after the greater-than-usual precautions were taken to provide conditions 
that would be compatible with the needs of the technique. The requirements for this 
technique are undoubtedly similar to those necessary to make other promising techniques 
workable, such as the method of Reference 49. This method is also an equation-of- 
motion technique utilizing the Fourier transform, a method function to remove de- 
pendence on initial and end conditions, and a least-squaring procedure. k 
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7.7.2 Frequency-Response Method 

Methods have been proposed (References 50-52 for example) to determine stability and 
control derivatives by using frequency-response data obtained from flight tests. The 
■ethod of Reference 52 encompasses the solution of all derivatives through a complex 
procedure. Other methods, such as that of Reference 51, provide only limited results 
based on various degrees of approximation. 

The method of Reference 52 replaces the time plane with the frequency plane. Amplitude 
ratios and phase relationships of airplane response to control input from frequency- 
response analysis of a pulse maneuver51* ss provide real and imaginary quantities. The 
complex quantities at discrete frequencies are substituted into least-squared equations 
solving for the derivatives desired. The method is simple in theory; however, con- 
siderable care, work, and time are involved in the application, and some experience 
is necessary in the selection of discrete frequencies. These factors minimize interest 
in further studies of the method, especially where time is of the essence in obtaining 
a relatively quick look at the flight wlues. Automatic data-reduction equipment would 
greatly expedite the frequency-response uialysiä and vould be useful for the other 
computations required. 

7.8 Analog-Matching Techniques 

When flight data are of such a nature as to preclude the successful use of the 
graphical time-vector technique or the approximate equations, and when time and expense 
will not permit the use of an experimentation with more sophisticated techniques, 
recourse is usually made to the analog to determine the derivatives that will provide 
the best match of the analog time history with the flight time history of a maneuver. 

The use of the analog should be considered as a last resort, to be used only when 
other techniques cannot be applied. It is not a "cure-all", for it can produce 
erroneous answers under certain conditions and still provide a good match with the 
flight time history of a maneuver. 

7.8.1   Conventional and High-Speed Repetitive Operation (REPOP) 
Analog Matching 

The mathematical model of the aircraft for the analog computer is provided by the 
airplane equations of motion; when attitude records (such as \p and rf>)  are available 
and used in the matching process, transformation equations are included to transform 
aircraft angular rates about the body axes to angular rates about Euler axes. 

Generally, the simplest mathematical model compatible with the needs of an investi- 
gation is used to reduce the number of analog components required and to expediate 
solutions. A five-dagree-of-freedom mathematical model, involving the general equations 
of motion, is employed when longitudinal and lateral-directional cross-coupling effects 
are factors in the responses of the airplane during the maneuver. When such cross- 
coupling effects are not factors to be contended with, the longitudinal and lateral- 
directional motions can be treated independently and as two separate analog programs 
using the linearized equations. Under such circumstances, the longitudinal program 
is treated as a two-degree-of-freedom case (with velocity a constant) unless phugoid 
is being considered, which is not often; and the lateral-directional program is 
treated as a three-degree-of-freedom case. Small-perturbation equations may be used 



The conventional matching technique is laborious because of the need to manually 
match a strip record with the overlay every time a programed condition is modified in 
order to study the effect of the modification and assess the next condition to be 
modified. The conventional technique may require from several days to a week to 
obtain a match. 

High-speed repetitive operation (REPOP) matching differs from the conventional in 
several basic aspects56. The strip recorder is replaced by an oscilloscope and the 
response to inputs is projected onto the scope, which has an overlay fastened to it. 
The projected response appears as a stationary time history as a result of an automatic 
high-speed recycling of the response computation. The maximum recycling speed for 
fidelity is governed by the time span of the time history to be matched and the frequency- 
response characteristics of the function generator. Where a cycling rate of 250 cycles 
per second may provide fidelity for a 3- or 4-second time history, it may cause serious 
distortions in projections onto the scope if a 10-second time history is projected. 

High-speed repetitive operation matching relieves the operator of manual matching 
of the time history, permits him to make rapid modifications of derivatives and Initial 
conditions, and allows him to observe effectively the influence of a modification on 
the response. When an optimum match is achieved on the scope, a strip record is made 
and matched with an overlay to check t.ie fidelity of the scope match and to retain a 
record of the resulting match. A REPOP match can normally be achieved in 4 to & hours. 

T* 
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to advantage in such instances, particularly when datums of angular rates and Euler 
attitudes may be suspect and angular accelerations have excesnive noise or are not 
available. 

Initial estimates of stability and control derivatives to be used in the mathematical 
model are obtained from available theoretical and/or wind-tunnel values. If possible, 
flight-determined derivatives obtained through the use of the approximate equations 
are employed. In the absence of the preceding, the best estimates possible are made. 
Initial estimates are required to establish reasonable scaling factors for the manually 
adjusted derivative potentiometers to save operational time. 

Inasmuch as errors in initial conditions shift the amplitude or rotate the response 
time history, provisions are made on the analog to program initial conditions through 
manually controlled potentiometers. 

Flight test inputs in the form of aileron and rudder deflections are reproduced on 
function generator components of the analog in as faithful a reproduction as possible 
within the limits of the function generators, which have a finite number of breakpoints. 
When these inputs are introduced into the mathematical model, the analog computes a 
response. 

In conventional analog-matching, the response is recorded by a strip recorder. The 
recorded response is then compared with the actual flight time history, which is re- 
produced on clear plastic to overlay on the analog time history. A mismatch indicates 
the need to modify the values of the derivatives, possibly change signs of several of 
them, and possibly modify the initial conditions. These changes are made by using a 
judicious trial-and-error process until a match is obtained. 

r 
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7.8.2 Advantages of the Analog-Matching Technique 

The analog-Batching technique for derivative determination,  in effect, accomplishes 
«hat sophisticated analytical techniques (see the preceding section) have attempted. 
It enables the determination of derivatives under circumstances «here approximate 
equations and the graphical time-vector technique fail.    It does not rely upon definite 
restrictive maneuvers, although there are some maneuvers that cannot be solved for. 
Test data shoving inadvertent inputs and subsequent disturbances may be used. 

7.8.3 Limitations of the Ar.alog-Matching Technique 

The success of every technique discussed for determining derivatives «as contingent 
upon the proper conditioning of the maneuvers involved. This is no less true of the 
analog-matching technique. A Dutch roll maneuver, induced by a control pulse, In «hich 
no spiral- or roll-subsidence modes are significantly evident, is generally Impossible 
to match with a unique set of derivatives. It «ill be found that any number of com- 
binations of derivatives «ill provide a match. A maneuver Involving continuous oscilla- 
tion of the control surfaces, as would be the case of lateral-directional oscillatory 
motiors with the lateral-directional stability augmentation system on, «ill also be 
very difficult to match with a unique set of derivatives. 

A properly conditioned lateral-directional maneuver for use on the analog to permit 
determination of a unique set of derivatives for a match should excite the roll and 
spiral modes as well as Dutch roll oscillations. The likelihood of obtaining a unique 
set of derivatives is increased «hen the maneuver is conditioned to include a rudder 
disturbance of a step-like nature, a transient oscillation, and an aileron disturbance 
not necessarily in this order - as «as mentioned in Section 7.7.1 and also illustrated 
In a recover?-from-sideslip maneuver «hich is considered in the next section. 

Also, as «as mentioned in Section 7.6.3, better accuracy «HI be achieved In the 
ratio of the dynamic characteristics major directional derivatives «hen the IAp|/|Ar! 

ilmlzing Influence of C0p), 
ratio is high (minimizing the influence of Cir) 

Is lo« (minimizing influence of Cn_), and in the major lateral derivatives «hen the 
|Ap|/|Ar| it «ay be concluded, then, 

Cjr are normally difficult to determine to any respectable degree of 
accuracyr The possibility of determining Cjr appears to improve with increasing 
tendency of the aircraft to roll off during a maneuver. 

that   Cn     and 

7,8A   Application of the Analog-Matching Technique 

Figure 64 shows the results of an analog match of a "recovery-from-sidesllp" maneuver 
at a Mach number of 1.84 and an altitude of 49,400 ft.    The match is typical for this 
aircraft, which had negative effective dihedral and adverse aileron yaw for the match 
shown.    Rigid wind-tunnel data corrected for flexibility effects on the actual vehicle 
predicted practically zero effective dihedral and proverse yaw due to aileron.    It was 
impossible to substantiate the predicted values on the analog, and only one combination 
of derivatives would provide the match. 

The following procedure is typical of that employed in arriving at the analog match 
of the flight data which did net include rolling and ya«lng accelerations: 

-. m ■ 
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1 
• 

(1) The mathematical model was represented by three lateral-directional small- 
perturbation equations 

A/3  =  ? sin «f>0 + A0) - Ar + «„Ap + ^ (q^S + Cjj A5r + Cy? A«a) - ^ sin0o 

Ap   =   ^£ Af + y^ L^ + 1 (CjjAp + cJrAr) + Ci$rASr + Cj^ASJ 

I qSb Tb 1 
Ar   =  -£* Ap + —  Cn^gAS + — (C^r + CDpAp) + cnSrA8r + e,,ASj   . 

(ii) In addition, the following transformation was employed to determine the change 
in Euler roll angle, which attained magnitudes of the order of 20° on occasions 
in the maneuvers under consideration 

A0  =  Ap - (r0 + Ar)0o cos (0O + Aft - T06Q COS<£0 

(iii) Finally, the outputs of the mathematical model were applied to the following 
two equations to modify analog values of A/3 and Aat to correspond to the 
indicated values of the flight data: 

A/3.   = A/3 + ^lAr-^Ap 1 V V 

Aatt -  - sin (<£„ + A<£) + sin0o + - (A/8 + Ar - <x,Ap) - 

" yinstr 

/"       ~ o ^ 
/•3rAr*      + 2pAp\ Af Ap 

-  : '-   jj 

* 

+ xinstr g " 
zlnstr g 

(iv) Starting with the arbitrarily selected time zero (as in Figure 64) for the 
time history to be matched: 

(a) Cüß   was adjusted for approximate frequency natch. 

(b) The control derivatives were adjusted to provide an initial rough match 
in the magnitudes of r and 0 . 

(c) Potentiometers for r„ and ß0   were adjusted to roughly aline r and 
ß  traces of the analog with flight data; similarly, potentiometers for 
<P0 and p0 were adjusted to roughly aline 0 and p traces. These 
actions involved the following analog Integration 

Ar = /(f0+Ar)dt.   A£ = J(40+A/3)dt. 

AP   =   J(P0 + AP>dt •        A<£  =   M + Afedt ■ 
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(d) Since adjustaent of   <j!>0   and   p0   modifies alineaent of analog and flight 
tracer: of   r   and   ß , step (c) was reiterated as aanjr tiaes as necessary 
to obtain a rough alineaent of analog and flight traces of   r , ß , <f> , 
and   p . 

(e) Attention «as then focused on the   r   trace to obtain a aore refined natch 
of this trace by aore cautiously adjusting   Cnr , CVg 
This operation necessitated adjustaent of  Cj^ , Cjj 
teep the   p   trace in line. 

Cn« , and C«, 

Cl« and Clr to 

It should be noted that the preceding five steps (IT) (a)-(e), which constitute an 
initial phase of operation to obtain an approximate match, involve about 1 hour. The 
explanation of the procedure is, by necessity, brief. It «ill be readily appreciated 
that the steps are iterative to keep the frequency of disturbance, the aagnitude of 
disturbances of the various traces, and alineaent of analog and flight tine histories 
coapatible. 

The second phase of the analog-aatching process involved the following operations: 

(f) With the trace roughly matched, attention was focused on the 4>  and 
p traces by aanipulating the Cj^ , C/p , and Cjr derivatives and the 
lateral-control derivatives as necessary. During this operation, fine 
adjustments were required and aade on the r and ß  traces (as per 
step (iv) (e)). 

(g) With 4> , p , r , and ß  traces matched as closely as possible, attention 
was focused on the at trace. This involved Cyß ,  CJJ and Prsr 

The last phase of the analog-aatching operation involved making fine adjustments to 
initial conditions (to compensate for probable errors) and fine adjustments to the 
derivatives, in essence, performing an iterative procedure of the preceding operations. 
The second and last phase of the analog-aatching process generally Involved 3 to 4 
tours and, at tiaes, aore. 

7.8.5   Accuracy of Results in Analog-Matching of Flight Data 

As nentioned previously,  the accuracy of the results in analog-matching of flight 
data is largely dependent upon the conditioning of the maneuver.    For the longitudinal 
derivatives, results from a pullup-and-relaase maneuver of an advanced Mgh-performance 
aircraft showed the following accuracies based on the amount the derivatives could be 
changed before a trend toward niaoatch became evident: 

(1) For a strong maneuver: 

CN(X 10% 

CNS 20% to 30% 

(CNq + CNa) 200% or more 

Cn« 

Cnse 

(Cma + Cms.) 

10% 

20% to 30% 
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(2) For a weak Maneuver: 

Cn« 

20% C-a 10% 

100% 
*•. 

20% 

200% or more «V, + cBd) 40% (SNQ + CH6t) 

The accuracies of the lateral-directional derivatives obtained fron analog-matching 
of well-conditioned, release -from-sideslip maneuvers of the same aircraft are shown 
in the following tabulation, along with the factors which influence the accuracy: 

Cnß - 5% 

Ci^ - 9% to 15% 

Cj/3 - 5% to 20% 

Cnr - 5% to 30% 

Cnp - 5% to 30% 

Cip - 5% to 30% 

Cir - 5% to 50% 

^nsr 
c*sB 

Cnsa 

- 5% 

- 5% to 15% 

- 5% to 30% 

- 10% to 30% 

True for any rudder release involving 
more than one cycle of oscillation. 

Depended upon oscillatory characteristics 
of 4>  and magnitude of ß ,  after 
rudder release. 

Depended on the magnitude of the at 
oscillations and the average slope of 
ß   from release to steady value. 

Depended upon the amount of transients 
the aircraft was allowed to go through 
before controls were applied again. 

Depended upon the magnitude of the roll 
rate during oscillation. Higher roll 
rate showed better accuracy. 

Depended upon the magnitude of the roll 
rate during oscillation. Higher roll 
rate showed better accuracy. 

Depended upon magnitude and oscillatory 
characteristics of rolloff. Larger 
rolloff showed better accuracy. 

True for any rapid rudder input. 

Depended upon the magnitude of the control 
input. 

Cy8  - 5% to 50% or more 

Cys  - 40% to 100% or more 
ft 

These results may be considered typical of what may be expected in analog-matching 
cf flight data obtained from properly conditioned maneuvers. The accuracies may well 
be typical of those that nay be expected when comprehensive analytical techniques are 
used. 

:- I 
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8. APPLICATION OF PLIGHT DERIVATIVES 

If wind-tunnel data and theory were infallible, it stands to reason that there would 
be no need for flight determination of derivatives. However, such is not the case. 
As new concepts in aircraft were developed, either with regard to physical geometry 
or propulsion systems, and as aircraft fly in new Mach and altitude regimes, there is 
the need to verify aerodynamic theory and wind-tunnel data and various influences of 
aeroelastic deformations of prototype structures on stability characteristics; to 
provide supplementary information not obtained in limited winJ-tunnel studies; and 
to uncover the source of discrepancies between predictions and actual flight behavior. 
The following discussions provide some insight into several of these areas. 

8.1 Verification of Wind-Tunnel Data and Theory 

As the Mach capability of the airplane increases, the technology in wind-tunnel 
testing becomes more critical with regard to model construction, support of the model, 
and interpretation of the tunnel data. Whereas theory depends upon wind-tunnel data 
for verification, or to fill in gaps where theory fails, the wind-tunnel may depend 
upon flight data, as new regin.es of flight unfold, to verify testing techniques. 

Plight data pointed out the need for a greater concentration of test points in the 
transonic region to accurately define the stability characteristics in this region 
(Pig.54). Flight data showed also that it was not sufficient to use a cold jet stream 
to simulate the exhaust of rocket engines. Figure 60 shows the effect of the jet 
exhaust of the D-558-II research airplane on the lateral-directional stability character- 
istics of the vehicle in the supersonic region. The destabilizing influence of power 
was the result of a pluming of the hot jet exhaust and consequent formation of a 
lambda shock wave at the juncture of the vertical tail and the fuselage. During Dutch 
roll oscillations, the shock wave on the leeward side of the vertical tail moved 
forward, while on the windward side it remained attached to the Jet exit. This pheno- 
menon it not common; it was the result of overexpansion of the jet exhaust and the 
proximity of the tr^Uing edge of the vertical stabilizer to the jet exhausts. 

Another illustration of discrepancy between flight and predicted data involved 
elevator setting for lg flight. A comparison of the variation of predicted and flight- 
determined elevator settings with Mach number showed increasing discrepancy with in- 
creasing Mach number for a constant center-of-gravity position. In this instance, 
involving aeroelastic effects, predictions showed reasonably close correlation of 
Cna with flight data; whereas, Cma and Cms  showed a difference in trend as well 
as level. Preliminary study of the problem snowed a need to consider Cmn as well 
as   Cm„   and   C, ms- Thus, the following pitching-moroent equation for trimmed un- 
accelerated level flight,  based on Equation (53b) (Table IV), was used and constituted 
the major consideration in arriving at the most likely causes for the discrepancy 
between predicted and flight trim settings of the elevator 

The angle-of-attack (a + occN=o) was replaced by its equivalent 

(186) 

a + «CN=O 
CNP 

(187) 
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to determine both predicted and flight values of CBo by the following new format 
of Equation (186), which is the slope-intercept expression for solving CBo , or 

CN(X      
e 

Also, Equation (186) was transposed to solve for 

K -- -Sa.-<w"* ac*> . (189) 
C-Se     °W8e 

A comparison of predicted and flight values of the ratios in Equation (189) showed 
the values of the ratio C^g/C^  to be essentially the same; however, CBo/C„s 
differed in line with the discrepancy in 8e . Calculation of the static margin using 
c«o/cNa • "hi00 was employed in determining CBo , also showed a discrepancy between 
prediction and flight. In the final analysis, it appeared that the major source of 
discrepancy between predicted and flight longitudinal trim elevator settings was due 
primarily to the differences in C^ and C„s 

An illustration of a discrepancy between wind-tunnel and flight data involving 
power effects and aeroelasticlty is shown in Figure 65. This instance concerned the 
F-100 airplane (Fig.16), which is considered to be a relatively rigid aircraft and 
has its air-intake nozzle at the nose. As shown in Figure 65, the variation of the 
wind-tunnel value of CD/S with Mach number has roughly the same trend as the flight- 
determined value. However, there is an appreciable difference in level that is well 
beyond the difference to be expected due to the values of moments of inertias; values 
are known to within 5% at best. The results of an investigation to trace the sources 
of the discrepancy showed appreciable moment of momentum effects of air-intake flow 
and aeroelasticlty effects of the vertical tail. When the basic rigid tunnel data 
were corrected for these two factors, fairly good correlation was achieved with the 
flight data (Fig. 65). 

A technique in tracking down inconsistencies in wind-tunnel data involving Cn;3 , 
CDp , and (Cnr - CCy£) was illustrated in Section 7.6.3. 

8.2 Effects of Aeroelasticlty 

The effects of aeroelastic deformation of the structural components on the stability 
and control characteristics of the aircraft are of prime concern, particularly in 
large transport designs, as pointed out in Section 6.3. The illustration of aero- 
elastic effects shown in Figure 65 represents an intuitive approach in accounting for 
a discrepancy between wind-tunnel and flight data. This approach presumes the basic 
rigid tunnel data to be correct. It also presumes that aeroelasticlty effects are 
simple enough to permit reasonably reliable calculation of corrections to the data. 

As aircraft Increases in size and slenderness, and operate at increasing dynamic 
pressures, aeroelastic deformations of the structure assume increasing significance. 
The influence of aeroelastic deformations on the stability and control characteristics 
is difficult to predict on the basis of theory. The deformations of the various 
components of the structure affect the shock patterns of the airflow which, in turn, 



82 

affect the stability and control characteristics in a much more complex manner than 
the aeroelaatic deformation of one or two surfaces on a relatively rigid aircraft. 
Rigid-model data may be Questionable because of the uncertainties in the true rigidity 
of the model and model supports and interference effects.    Thus, a more positive 
approach is required to assess flexibility effects to verify and improve theory and 
develop tunnel techniques. 

A flight test technique for determining aeroelasticity effects on stability and 
control characteristics is outlined in Section 6.3.    The technique, as presented, is 
somewhat simplified in that the lifting  components of thrust is considered to be 
negligible.    This approximation simplifies flight planning, monitoring, and making 
on-the-spot changes in flight conditions of   W   and   h    for maneuvers at constant   M , 
approximately constant   CL   due to aerodynamic lift alone,  and constant center-of- 
gravity.    An average of the postfllght-determined values of 

W - T sin 6 
(190) 

for the test points on the "constant   II , CL ,  and center-of-gravity line" in Figure 
39 - such as points 1 and 2 - will constitute the representative value of   C,    for 
these test points.    The maximum deviation from actual   CL   is within the experimental 
error of the investigation.    The stability and control derivatives of these points, 
when plotted against dynamic pressure,  define a curve which shows the effect of aero- 
elasticity on the derivatives, 
dynamic lift alone,  and center 

The curve represents only one 
f-gravity condition. 

due to aero- 

8.3 Stability Criteria 

Considerations of the stability of an airplane include not only its inherent 
stability, which is its behavior without pilot inputs following an initial disturbance, 
but also its behavior in response to pilot inputs. In general, the study of the 
stability of an airplane involves the effect of derivatives on the Increase or decrease 
of the stability. It is ai objective study. When the stability of the airplane is 
considered in the light of the degree of pilot' s acceptance of the airplane, and pilot 
ratings are introduced, the study becomes subjective and is referred to as a handling- 
qualities study. As may be -eadily surmised, one study complements the other. 

Any extensive discussion of handling qualities, which integrates the pilot as a 
human servosystero constituting a feedback loop in the control system, is beyond the 
scope of this paper. It would involve the study of human factors and is affected by 
the pilot' s technical background as well as the depth of piloting background, the 
types of aircraft flown, orientation and types of displays in the cockpit, and general 
cockpit environment. The art and science of handling-qualities investigations is 
covered extensively in the literature (References 57-65, for example). 

8.3.1   Longitudinal Short-Period Oscillation,   con 

The response of the airplane to an elevator input or gust disturbance will normally 
include a longitudinal short-period oscillation. An oscillatory condition by itself 
indicates a stetic oscillatory stability. Positive, neutral, or negative dynamic 
oscillatory stability is dependent upon the presence of positive, zero, or negative 
damping characteristics, respectively  A study of the longitudinal characteristics 
involves both static oscillatory stability and damping. 



83 

The undamped natural frequency (static oscillatory stability) is a measure of the 
longitudinal stiffness of the airplane - analogous to a spring-mass system.    This 
longitudinal stiffness is represented by 

c*>l - (M„ + irz„) a       q a 

=    -ICaq + C.q(K~- 
Sc 

(191) 

It will be noted that for any one mass distribution and configuration of the airplane, 
the longitudinal stiffness is a direct function of CBaq primarily. Thus, the oscilla- 
tory frequency of the airplane will decrease with decreasing Caa and decreasing q . 

It should be noted that when Cm<x   is zero, a degree of longitudinal stiffness 
(static oscillatory stability) will be present as evidenced by the ~s<Aja term in 
the equation, providing C|  is negative - a normal situation. The contribution of 
this term to longitudinal stiffness will increase with increase in CN(X , decrease in 
mass-density parameter, /xc , and increase in dynamic pressure, q . 

In maneuvering flight, the pilot feels the effect of longitudinal oscillatory 
stiffnesr in the stick force per unit normal acceleration. 

i- 

8.3. 2   Longitudinal Short-Period Damping 

The longitudinal short-period damping is expressed either as the actual damping 
coefficient or as a damping ratio.    The damping coefficient (ft lb sec/rad) is dependent 
upon the aerodynamic derivatives   CN(X   and   (C^ + cB&),  as shown in the equation 

2H    =   " fa + <«, + »d)] 

W 
mV 

qSc2 

(CBq + CB&) — 

«2 S Sc 
CN^V--^  +cB,a)pv — 

2m 41. 

(192) 

A decrease in CN(X or the negative value of (C,, + Cg,a) will decrease the damping co- 
efficient, 2(a>n . It will be noticed that the magnitude of the coefficient is also 
dependent upon the mass density of the air £ and airspeed V , as well as upon the 
airplane' s mass characteristics and configuration. 

The damping ratio £ as may readily be surmised from the preceding, is obtained from 

24^   _       Za + (Mq + Ma) 
£ 

2w_ 2V-Ra 

W^]"(^ + <^pvfe]g 
"^(-Cma) 

(193) 
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Thus, for any one nass characteristic and configuration of the airplane, the damping 
ratio   £   is a funct'jn of   \/p , CN(X ,   (CBq + Cld),  and   v/(-cB(X). 

8.3.3   Longitudinal Short-Period lead Term,   -Za 

The parameter  -Z~a , which is a function of   CN(X ,  is a longitudinal short-period 
lead term which affects the lead of the pitch rate   q   with respect to the control 
input   Be   and angle-of-attack as shown by the transfer functions 

q(s) 
-MSeZa   8 + 

sz + 2£a)ns + oü* 
x) m CNaqS\ /        1 

s + 
mV 

B2 + 24«ns + col 
(194a) 

' 
and 

o(s) MS. 

Se(s) s2 + 2£o;ns + a>* 
(194b) 

As shown in Reference 64,  the time for peak amplitude of   q   due to a step input de- 
creases with decreasing   -Z If -Z„ a .    .. -ua becomes sufficiently small in comparison to 

ct>n  , the response to a step input can be disconcerting. It may be characterized in a 
tracking task by an initial increase in pitch attitude of the airplane followed by 
dwell, possibly with the airplane aimed at the target; but, then, with no further 
control input, there will be a subsequent increase in the attitude. This type of 
behavior may give the pilot the feeling that the airplane is unstable. 

A low value of -Za may cause the pilot to experience a looseness in pitch, pitch- 
rate overshoot, lack of control precision, and higher control forces. On the other 
hand, a high value of -Za may cause a tendency to overcontrol, exceed normal g , 
and, in general, give the impression that the control is too sensitive. 

8.3.4 The Dutch Roll Oscillation,   wn 

The Dutch roll mode of oscillation, represented by the following equation, based 
on an approximation of the second equation in Equations (78), is a measure of direct- 
ional stiffness 

og    =   N£-L£sina+ (Nj + L^ 

^ /Cn/3 -JLc-  - x" iß + YYClßj 5Sb (195) 
x z 

Insofar as derivatives are concerned, Cn/3 and C,^ are normally the only derivatives 
of any consequence in defining the frequency of this mode of oscillation. Of these 
two derivatives, Cn/3 is dominant. It should be noticed that when the static direct- 
ional stability is zero (Cn^ = 0), there is still some degree of oscillatory stability, 
providing the effective dihedral is positive (Ciß = - ) and the product of inertia is 
negative, or vice versa. Some aspects of the controllability of the airplane when 
jnß is near zero and slightly negative are reported in Reference 60. 
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8.3.5   Dutch Roll Damping Coefficient,   2£<y 

The Dutch roll damping coefficient represented by the following equation, based on 
an approximation of the first equation in Equations (78), gives the measure of the 
dynamic stability of the Dutch roll mode 

2H «r - */J - Lp 

  (Cnr - C„fl) + -?£  +   Cj_ 
2VIZ  °r   aß        mV  2VIX 'p 

qS (196) 

This equation shows the interaction of the more dominant derivatives affecting the 
damping ratio. The equation is -sore accurate than that shown as Equation (182) in 
that it includes Cj . 

8.3.6   Dutch roll damping Ratio,    £ 

On the basis of Equations (195) and (196), the damping ratio can be approximated to 
at least the first degree of approximation by 

- % - V c; 

-fe(Cn- 
c„4> mVb  2VI. •] ClJ (qSb)> 

■ft- 'Iß) 

(197) 

The Dutch roll damping ratio is strongly affected by N£ and No . An increase 
in the negative value of N^ not only increases the damping ratio, £ , but also 
improves the stability of the spiral mode. Increasing FTA not only increases direct- 
ional stiffness but also the Dutch roll damping ratio, which may be desirable. Decreasing 
Ng increases the bank angle that is induced by a given amount of sideslip in the Dutch 
roll motion, a characteristic which could be detrimental to maneuvering control of the 
airplane. In addition, decreasing Ni increases the amount of Dutch roll disturbance 
in the roll mode response to a step aileron input - as reflected in the parameter 
(oj^/aig)2 to be discussed - and can disturb and nislead the pilot. 

8.3.7   Stability Criteria for Aileron-Only Roll Control,    ^Joi^ 

The roll parameter, aty/<un , is the roll numerator to Dutch roll frequency ratio of 
<£/8e response function. It is represented by 

%   _ 
G-L 

1       T.ITi K'ßhL 

iß 
n/3 

(198) 
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The parameter Is a measure of the amount by which the Dutch roll motion is excited when 
aileron inputs (rudder fixed) are made by the pilot. It is particularly Important in 
the roll tracking task in which the pilot-airplane combination can exhibit considerably 
different lateral-directional oscillatory tendencies than would be exhibited by the 
airplane alone. Jt provides a good index regarding the increase or decrease in stability 
of the airplane during the aileron-alone roll tracking task. 

When «fy/w„ = l , there is no yaw due to aileron Inputs and there is little or no 
Dutch roll motion in response to aileron input. When UJ<\ < 1 , the pilot-airplane 
combination in an aileron-only tracking task will exhibit an effective damping ratio 
in roll tracking tasks greater than the Dutch roll damping ratio. When WV% > 1 . 
the effective damping ratio will be less than the Dutch roll damping ratio and the roll 
that results from aileron input is augmented by the roll due to sideslip; this can 
cause stability problems in the roll tracking task, especially when the Dutch roll 
damping ratio is small and \4>\/\ß\    is large. 

Equation (198) shows significant interaction of stability, 
parameters affecting c^f/coB . The interplay of Cns , Ciß , 
inasmuch as these parameters may have either plus or minus values. Normally, C 

control, 
and I xz 

and inertia 
is important, 

ns. 
and Ciß   are the controlling parameters; thus, if the effective dihedral is positive 
(C{d < 0), C„5  will have to be adverse (CBi   < 0) tc assure atyA>n < 1 and a 
stabilizing action during the roll tracking task. 

8.3.8   Dutch Roll Stability Criteria,     \<f>\/\ß\ 

The amplitude ratio \4>\/\ß\    is a characteristic of the Dutch roll oscillations 
and is thus independent of any excitations of control inputs. Its mathematical relation- 
ship to derivatives is given by 

101 
1/91 

hi 
i + 

NT'
2 

r/2 

-12 

1 +■ 

H 

(199) 

The complex Interaction of the derivative parameters makes it difficult to determine 
pilot sensitivity to I0I/I/3I . However, if the airplane has high directional stiff- 
ness (fi>n >  l), low |0|/|/Ö| , reasonable £ > 0.1 , and adverse yaw due to aileron, 
the pilot generally does not bother to coordinate turns by using rudder, inasmuch as 
the lateral-directional stiffness keeps sideslip small and the low value of |<£|/!/?l 
keeps roll due to sideslip small (Ref.64). 

If l<£l/l/3| is large (of the order of 4 or more), rudder coordination becomes 
necessary in maneuvering to keep sideslip small in order to minimize the roll due to 
sideslip. If the airplane is characterized by favorable yaw due to aileron (CDi   > 0) 
as well as high values of |#|/|/8| , the pilot uses a cross-coordination of rudder 
and aileron controls (right aileron and left rudder) to prevent excessive rolls in 
maneuvers (Ref.64). It is not difficult to achieve coordination of controls, pro- 
viding the airplane is not excited by external disturbances. However, because this 
cross-coordination is unnatural, the pilot is more critical of favorable yaw due to 
aileron (Cns > 0) than adverse yaw due to aileron (C„g < 0). 

-U 
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8.3.9   Roll-Subsidence Root,    1/T. 

The roll-subsidence root, 1/TR , is Influenced most significantly by the parameters 
shown in the following equation, which is based on the third equation of Equations (78) 

— ~ - L' 
T„     p K 

= -cj, 
qSb2 

2VT 

(200) 

As shown, the roll subsidence is dominated by the damping-in-roll derivative, Cj . 

The roll-subsidence root has a direct influence on the steady-state roll rate in 
response to a specific aileron deflection. When the root is large, the damping in roll 
is high and the pilot controls the bank angle by commanding and adjusting roll rate. 
When it is small, the pilot controls bank angle by commanding and adjusting rolling 
acceleration. 

8.3.10   Spiral-Divergence Root,    1/T8 

The spiral-divergence root, 1/Tg , is affected primarily by the parameters shown 
in the following equation, which is based on Equation (83), 

~ T, 
g (iffi; - L;N^) 

*h 
(201) 

The spiral mode can be convergent, neutrally stable, or divergent. Thus, for the 
purpose of defining the spiral stability boundary, the equation can be shown as a 
spiral stability criterion 

V*r " 
N/3Lr 

or, as an approximation, 

clßcnr ~ Cn^Jr 

' > 0        spirally convergent 

= 0        neutral spiral stability 

< 0        spirally divergent   . 

(202) 

It will be noticed that spiral stability is dependent upon the interaction of four 
derivatives. Since Cn/3 is normally positive and Cnr and Cj^ are normally negative, 
it is well to have C»r negative. Under any circumstance, Cj^Cnj. should be greater 
than C„£Cir for spiral stability. 

A divergent spiral mode will result in the airplane performing an increasing nose- 
down and tightening turn accompanied by an increase in speed and loss in altitude. 

■f 

8.4 Flight Guidance 

Research vehicles that incorporate new concepts of aerodynamic configuration, or 
research vehicles designed for flight in previously unexplored regions of flight (Mach 
and altitude), usually have a considerable amount of wind-tunnel investigations per- 
formed on models to check their stability and control characteristics. Despite the 
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comprehensiveness of the tunnel tests, tbsre will be gaps in the data. In addition, 
there is normally a certain, amount of reserve in placing complete confidence in the 
data. As a result, the flight envelope is built up gradually, using stability and 
control maneuvers to obtain flight-determined stability and control derivatives to 
verify wind-tunnel data. 

Agreement in the comparisons results in a more rapid buildup of the flight envelope; 
disagreement involves a slowdown until the flight data can be reduced and cautiously 
extrapolated. The most representative values of the stability and control character- 
istics are used in stability criteria and are programed into a flight simulator, in 
which the pilot simulates the intended mission and emergency conditions to reduce the 
amount of risk that would otherwise be involved in actual flight. The simulator 
normally uses the general equations of motion for a mathematical model. 

When roll-coupling instability became a physical reality with the loss of several 
F-100 airplanes, considerable effort was expended at the NASA Flight Research Center 
in flight and simulator studies of the problem66'67. Because of the complex nature 
of the motions, guidance of the flight program using analog computations was desirable. 
In a roll investigation of this type, a small increase in aileron deflection can pro- 
duce large effects on airplane motions. It has been graphically demonstrated on several 
occasions that flight guidance based on linear extrapolation of flight data at small 
aileron deflections can be highly misleading and dangerous. Figure 66 shows a repre- 
sentative comparison of the measured excursions in angle-of-attack and angle-of-sideslip 
obtained in 360° rolls with those predicted by using flight-determined derivatives. 
The good agreement has been demonstrated in most instances in which flight-determined 
derivatives have formed the basis of calculations. Consequently, the use of such 
guidance in flight planning has proved invaluable. The use of wind-tunnel and theoreti- 
cal derivatives in analog studies has not been as successful. 

9. CONCLUDING REMARKS 

This paper has attempted to bring together the various factors that should be known 
by the engineer who is concerned with the determination of stability and control charac- 
teristics from flight data or the use of these flight-determined characteristics in 
handling-qualities research. 

The discussions have been tempered with practical considerations. The various 
factors discussed and the observations made are the result of experience in working 
with flight data, developing techniques, comparing the data with predictions, and 
investigating the causes of discrepancies, 

The theoretical background, approximations, and limitations of the mathematical 
relations employed have been given careful consideration. The problems encountered 
with several oi the more sophisticated techniques have been presented with the hope 
that any new comprehensive technique that may be proposed will take into consideration 
some of the practical problems with instrumentation and development of maneuvers to 
properly condition the flight data for the technique. 

The pulse maneuver, properly executed, has been found to be generally adequate in 
exciting motions required for stability-derivative analysis as well as for determining 
the characteristics of the oscillatory modes if adequate instrumentation and alinement 
are provided. 

;AJ$ .i 
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For longitudinal-derivative analysis, simple equations utilizing period and damping 
of the oscillatory mode of the airplang were shown to be as satisfactory as more com- 
prehensive methods. 

T^s 

For lateral-directional derivative analysis, the graphical time-vector method was 
shown to be the most satisfactory manual method of analysis.    Simple approximate methods 
are useful if applied with caution. 

* 

Control effectiveness can usually be obtained by relating the peak acceleration to 
rapid control inputs. Consideration must be given to aerodynamic contributions if 
reasonable accuracy is to be realized. 

Hie analog-matching technique for determining derivatives from flight data was 
shown to be a valuable method of analysis for use in the absence of data suitable for 
analytical techniques. However, the analog-matching technique has limitations in that 
data must be properly conditioned in order to obtain unique answers. The accuracy of 
the results obtained from this technique and the effect of the type of maneuver on the 
accuracy may well provide the clue to what may be expected from sophisticated techniques 
that may be proposed. 

The use of flight data to verify wind-tunnel results and theory was discussed and 
illustrated. The possible inadequacy of comparisons of flight data with predictions 
for determining aeroelastic effects was pointed out and a flight-planning technique 
explained to permit determination of aeroelastic effects from flight data alone. 

Present instrumentation and methods of analysis are adequate for extracting deriva- 
tives from flight data for use in most flight-guidance simulator studies and detection 
of characteristics which have not been predicted in the wind-tunnel. 
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TABLE I 

Transfonwtion of Derivatives froa Stability to Body Axis 

c«a = CLacos a + Coasin a + Cc 

Cca 
= Coacos a - CLasin a - CN 

C«a = (C.a)8 

cnß = (Cnyj)a coa a + (Cj^s sin a 

Cnr 
= (Cnr)a cos2 a + (Cip)B sin2 a + (Cnp + Cir)8sinacosa 

CDß = (Cny§)sCosa+ (C^)8Bina 

S = (Cnp)s cos2 a - (Cjr)8 sin2 a - (Cnr - Cj )8sinacosa 

C»S = (Cn8)8cosa + (Cij)8sina 

Clß = (Ci^scosa- (Cn^)Bsina 

ch = (Cir)8 cos2 a - (Cnp)8 sin2 a - (Cnr - Cip)8sinacosa 

clß = (Ci^)8cosa- (Cn/8)ssina 

Ch = (Cip)8 cos2 a + (Cnr)8 sin2 a - (°np + Cir)8sinacosa 

Cl| = (Cls)s cos a - (Cns)8 sin a 
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TABLE II 

Transformation of Derivatives fro« Body to Stability Axis 

CL« 
= C((acos a - Ccasin a - Cp 

cDa 
= CCacc8 a + CN(Xsin a + CL 

<*«>s = C-a 

(cn^s = C^„cosa - Cj„sin a 

(Cnr)s = Cnr cos2 a + Cjp sin2 a - (Cjr - Ca ) sin a cos a 

(Cn^s = Cnä cos a - Cl ö sin a 

«Vs = Chp cos2 a - Cjr sin2 a + (CDr - C/p) sin a cos a 

(Cnj)s r CDj cos a - Czs sin a 

(Clß)B 
= Ciß cos a + Cnä sin a 

«Vs = Cjr cos2 a - Cnß sin2 a + (CDr - Cjp) sinacos a 

(Clß)s = Cj^cosa + Cn/gSin a 

<%U = C/p cos2 a + Cnr sin2 a + (C[r + Cn ) sin a cos a 

(Cjj)s = Cjj cos a + Cn$ sin a 



97 

TABLE III 

Transformation of Noaents of Inertia fro« One Axis Systen to Another 

Body to Stability 

xx. = idx + iz) - idz - I x) cos 2a - Ixz sin 2a 

«t. =   ly 

Jz. = idx + iz) + idz - I t) cos 2a + Ixz sin 2a 

I»szs =   t dx ~ Iz) sin 2a + Ixz cos 2a 

Stability to Body 

Ix =   ±(Ix8 + Iz8) - idz8 - Il8) cos 2a + IX8Zg sin 2a 

ly = ly. 

Iz = idz8 + ix8) + idz8 - IXs) cos 2a - Ixs2s sin 2a 

Ixz =   Ix8z8
COB2a - idx8 - I- ) sin 2a ZS 

Principal ^o Sto6 :Zity 

l*B     = idxo + W -idzo- Ix0) cos 277 

*y» = lyo 

Izs    = idxo + Iz0) + idz0 - Ix0) cos 277 

IisZs    = idx0 - IZ0)sin2i7 

Stability to Principal 

^o   = i<ix8 + w - idz8 - W cos 2?7 + Ix8z8 
sin 2T; 

ho   = h3 

lz0    = ittx8 + Iz8) + idz8 - !X8> COS 27? - Ixaz8 
sin 277 

Ixozo   = 0   = Ix8zs cos 2)7 - i( rX8- 
IZg) Sin 277 

(Continued) 
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Principal to Body 

I*   = idxo + W - idzo - Ixo) COS 2€ 

h   = lyo 

h   = idio + Iz0) + idzo - IXo) cos 2e 

Ixz   = -idx0-iz 0) Bin 2e 

Body to Principal 

!xo   = idx + Iz) - idz - Ix) COS 26 - Ixz sin 2e 

ho   = h 

Iz0   = idi + iz) + idz - ix) cos2e + Ixz sin2e 

JXoZo   - 0   =   Ixz cos 2e + ±(IX - Iz) sin 2e 
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TABLE VII 

Desirable Characteristics of Instruments for Free-Oscillation Maneuver 

.    I 

Function Range 
Sensitivity 

(per inch 
deflection) 

Undamped 
natural 

frequency (c/s) 

Damping 
ratio 

a ,  deg ±10 5.0 8 ov more 0.65 

ß.  deg ±10 4.0 8 or more 0.65 

q , radian/sec ±0.2 0.2 8 or more 0.65 

q , radian/sec2 ±0.5 0.5 8 or more 0.65 

r , radian/sec ±0.1 0.1 8 or more 0.65 

f , radian/sec2 ±0.4 0.4 8 or more 0.65 

p , radian/sec . 
±0.2 

±0.6 

0.2, rudder pulses 

0.6, aileron pulses 

8 or more 

8 or more 

0.65 

0.65 

p , radian/sec2 • 
±0.6 

±6.0 

0.6, rudder pulses 

6.0, aileron pulses 

8 or more 

8 or more 

0.65 

0.65 

an , g units ±1 1.0 8 or more 0.65 

at , g units i 

±0.3 

±0.6 

0.3, rudder pulses 

0.6, aileron pulses 

8 or more 

8 or more 

0.65 

0.65 
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TABLE VIII 

Format used by NASA Flight Research Center to Record 
Actual Conditions at Tine of Maneuver 

Trace Instrument 
Not, frea 

I».SO 
10,SO 

Oomt-rafio 
St«i» (gcfrri 

Fir*, to. 

' .196 
.MIO 

10 3o 

Wt 
V 

/9- vane location 
•   T * 

liri&or accelerometer location" 
X »- ■•»y 

l##flMt#fK ««.-M* 

ft 

M 

fps 

Dynamit 
preuvro, 

3 

w»;9ht, 

ft 

a 

C.6., «*,« 
W 
P 

/Ö 

Demit/1, 

«*<• /7 44,330 0.743T 723 /«2 7?,8,?o 2g.7 a23-» .••*f7J / 

Trace Jnsfrur n«n< Scale    factors 
A«, to-o Damo. ratio Fit*. »0-* Fit's. 

a /o.r .U ICC 

  
an_ J2.0 .cs- €,n 

--£" n.*t 
^a !*■ 7 

Airplane . 

Configuration 
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TABLE IX 

Airplane II Altitude, 
ft 

a, 
efeg 

Reference Cng 
(Eq.(6.53)) 

Cga , per radian 

Equation (6~54) Equation (6-56) 

F-104 

YP-102 

0.94 

0.74 

41,000 

40,000 

4.9 

6.6 

0.46 

0.054 

0.46 

0.043 

0.57 

0.106 

TABLE X 

a/U/h 15/0.8/60 3,5/0.8/40 6.6/1.2/60 14/1.6/80 10/2.0/80 5/2.0/80 

Analog value 
of   Ciß 

-0.084 -0.021 -0.032 -0.074 -0.0164 -0.0034 

Analog value 
of   Caß 

Equation (166) 

Equation (175) 

0.259 

0.286 

0.278 

0.641 

0.661 

0.679 

0.640 

0.6o3 

0.674 

0.367 

0.360 

0.383 

0.445 

0.434 

0.451 

0.508 

0.498 

0.504 

TABLE XI 

a/M/h* 15/0.8/60 3.5/1.0/40 18/1.2/80 6.6/1.2/80 14/2.0/80 10/2.0/80 5/2.0/80 

Analog value 
of (Cn,.-^) 

-1.58 -1.734 -1.71 -1.92 -2.09 -2.55 -2.58 

Equation 
(184) 

Equation 
(183) 

-2.50 

-4.22 

-1.43 

-1.647 

-2.96 

-4.69 

-1.81 

-2.36 

-4.77 

-8.46 

-2.76 

-4.41 

-2.66 

-4.39 

b = altitude/1000 
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(a) Euler angle perturbation referred to the x^z,. basic reference frame 

(b) Euler angle perturbation referred to xt,^,^^ axes serving 
as a secondary spatial reference 

e'ig. 4  Several methods of considering Euler angle perturbations 

a ' '*•■- 
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Pig. 5     Relation of   p , q , and   r   about body axes and Euler angle rates   </< , 6 , 
and   4> 
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Ctntar of gravity 

W«.6     Pertinent relationships of rotating ..... # 

Pig. 7     An exaaple of tin influence of ranges of disturbances such as   (Aß) l   and 
(äß)2   on the value of a derivative 
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Fig.8     Effect of time lag of modification of vortex flow about lifting surface on the 
change in   CN   following initial instant change in   a 

<p = upwaih du* lo wing. «tc. 
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Fig.9  Direct propulsive effects of propeller 



112 

~w   "" 

£p = upwath at air inralt« 

Pig. 10     Direct propulsive effects of jet engine 

Fig.11     Jet-exhaust inflow effect on horizontal tail 
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Fig. 14     Determination of pitching moment of inertia 
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(a) Test setup 

115 

(b) Vector resolution 

Fig. 15     Determination of inclination of principal axis and yawing moment of inertia 
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Pig. 16  Photograph showing a general arrangement for determining Inclination of 
principal axis and yawing moment of inertia. Springs attached to 

mounting brackets located below wings 

Amplitude  ratio, 

lApl 
IÄ7T 

.04 -.02 0 .02 .04 

Tangent of restoring spring angl», tan 5 

.06 

«P 

.08 

Pig. 17     Amplitude ratio   |Ap|/|Arl    as a function of spring restoring angle 
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from Reference 24 
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Reproduced from Reference 30 
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Fig.30  Influence of interference angular velocity ("q" rate) about spin reference 
axis of a sensitive rate gyro 
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Pig. 33     Chart for correcting senslng-recording circuit of instrument for phase lag 
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Fig.36     Results of analysis of flight data in region of rapid changes in aircraft 
characteristics 
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Fig. 37     Variation of the period of an F-100 series airplane as a function of Mach 
number, altitude, angle-of-attack,  and load factor (from Reference 41) 
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Fig.42     Typical tine histories of the lateral and directional response characteristics 
of the test airplane resulting from abrupt yaw-damper deflection 
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(a) Wings-level sideslip (b) Constant-heading sideslip (r = 0) 

Fig.43  Comparison of wings-level and constant-heading sideslips 
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Fig.44     Relation of small-perturbation rolling velocity and acceleration vectors to 
small-perturbation roll-displacement vector in a transient oscillation 
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Film scale factors 
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Fig.46     Determination of time-to-damp to one-half amplitude and amplitude ratios 
from free-oscillation data 
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Fig. 49  Typical determination of flight quantities for the evaluation of longitudinal 
control derivatives 
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Fig.51  Time histories of longitudinal pulses performed on the X-15 analog with the 
stability augmentation system engaged and disengaged (from Reference 42) 
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Fig.56  Topical determination of flight quantities for the evaluation of lateral 
control derivatives 
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D-558-II research airplane (from Reference 43) (continued) 
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(b) Influence of power on the variation of static and dynamic lateral 
stability derivatives 

Pig.60     Results of graphical tine-vector analysis of the effects of power on the 
lateral-directional period, damping, and stability derivatives of the 

D-558-II research airplane (from Reference 43) (concluded) 
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Fig.62  Typical time history of maneuver to determine derivatives by least squaring 
the equations of motion (Reference 48) 
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Pig.63     Lateral-directional derivatives determined by least squaring the equations 
of motion,  as per Reference 48 (continued) 
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Fig. 64     typical analog-match of a "recovery-from-sirieslip" maneuver of an experimental 
aircraft.    M = 1.84 ; altitude = 49,400 ft 
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Fig.65  Influence of flexibility and air intake to engine on the directional stability 
derivative, Cn/3 
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Fig.66  Comparison with flight data of results of analog simulation studies of 360° 
rolls using flight-determined derivatives 


